

Simulation and tests of HEPD-02 scintillator prototypes

A. Contin, M. Lolli, A. Oliva, F. Palmonari, M. Pozzato, <u>Z. Sahnoun</u> (Univ. & INFN Bologna) and R. Battiston (TIFPA & INFN Trento)

on behalf of the CSES-Limadou collaboration

14-18 Settembre

106th SIF Congress

The High Energy Particle Detector (HEPD-02)

HEPD-02, on board of the China Seismo-Electromagnetic Satellite (CSES-02) is aimed to measure particle precipitation due to short-time perturbations in the radiation belts caused by solar and terrestrial phenomena.

The energy range explored is: 3 - 100 MeV for electrons and 30 - 200 MeV for protons.

The detection of Particle Bursts for Earthquake study needs a low Energy threshold → Thin trigger counters

Prototypes Scintillator bar 16 cm × 3 cm ; 2 mm (3 mm) thick with 2 cm long trapezoid light guides

PMT2 -----

EJ-200 Plastic Scintillator emission spectrum.

EJ-200 plastic scintillators combines a long attenuation length, a fast timing and high light output

PMT1

Radiant sensitivity and Quantum efficiency of R9880U- Series Hamamtsu Photomultipliers.

WAVELENGTH (nm)

High Gain, fast time response and high quantum efficiency

Geant4 Simulation

Scintillator bar 16 cm \times 3 cm ; 2 mm (3 mm) thick with 2 cm long trapezoid light guides

PMT2 —

Implemented in Geant 4.10:

- Geometry and optical properties of materials : refractive index, absorption length.
- Optical photons and processes.
- Scintillation properties of the plastic (EJ-200)
- Reflectivity of the wrapper (Mylar).
- Quantum efficiency of Photocathodes

Run:

Muon beam at minimum ionization with normal incidence uniformly distributed on the scintillator surface.

output

Number of photoelectrons on each PMT, with their arrival times and wavelengths

PMT1

Most Probable number of Photoelectrons

Square 3×3 cm²

near PMT1

5

Spatial Resolution

2 mm

Position along the bar versus the ratio (p1-p2)/(p1+p2)

p1: number of photoelectrons seen by PMT1p2: number of photoelectrons seen by PMT2

Distribution of the difference between reconstructed and real position.

The fit is a Gaussian distribution with : Sigma = 1.4 cm

Experimental Test

Prototypes of plastic scintillator 2 mm and 3 mm thick coupled at each end to Hamamatsu R9880-210 photomultipliers trough 2 cm long trapezoidal light-guides.

Comparing Simulation to Data from experimental test

Scintillator bar 2 mm

Comparing Simulation to Data from experimental test

Scintillator bar 3 mm

9

Conclusion

- Two prototypes of trigger counters 2mm and 3mm thick were tested
- The number of photoelectrons collected was found to be sufficient to ensure a good detection efficiency for low energy electrons and protons
- Thin counters minimize scattering and allow for a low threshold which is also valuable for cosmic nuclei studies.
- A Geant4 MonteCarlo simulation was implemented and tuned to reproduce experimental data
 - \rightarrow it shows a reasonable agreement with data collected and is being used to study the total trigger plane/system efficiency and resolution.
 - \rightarrow it also serves as a basis for the plastic calorimeter simulation studies.