

First direct detection of CNO neutrinos: the multivariate fitting strategy

Luca Pelicci on behalf of Borexino Collaboration

106° Congresso Nazionale della Società Italiana di Fisica 14-18 Settembre 2020

Outline

Solar neutrino physics

The Borexino detector

The multivariate analysis

Solar neutrino physics

According to the Standard Solar Model the Sun is powered by two sequences of thermonuclear reactions:

Reaction: $4p \rightarrow 4He + 2e^+ + 2\nu_e$ $Q \approx 26.7 MeV$

Solar neutrino physics

In the last decades several issues in astroparticle physics have been addressed through solar neutrino detection:

First direct detection of CNO neutrinos

Solar neutrino physics

In the last decades several issues in astroparticle physics have been addressed through solar neutrino detection:

CNO cycle represents the missing piece for the complete understanding of the processes that make the Sun shine

First direct detection of CNO neutrinos

The importance of CNO neutrinos

CNO neutrinos have never been detected so far:

- Proof of energy production in the Sun via CNO cycle
- CNO cycle is xpected to be dominant for stars with $M \geq 1.5 \ M_{\odot}$

Metallicity problem:

Inconsistencies beetween solar models based on high or low metallicity scenarios:

 Φ_{CNO}^{SSM} differ at ~30% level using different metallicity scenarios

CNO neutrinos are the perfect candidates to solve the puzzle

Outline

Solar neutrino physics

The Borexino detector

The multivariate analysis

The Borexino detector

The Borexino detector

First direct detection of CNO neutrinos

Borexino: a long story

Outline

Solar neutrino physics

The Borexino detector

The multivariate analysis

Data selection - Backgrounds

Internal backgrounds

 ^{232}Th and ^{238}U are negligible ($\sim 10^{-19} g/g$) after purifications campaign ^{210}Bi reduced by a factor ~ 2 , ^{85}Kr reduce by a factor ~ 5 ^{210}Po identified via α/β discrimination

External backgrounds

 γ 's produced from ^{208}Tl , ^{214}Bi and ^{40}K radionuclides Reduced with FV selection and exploiting radial dependence

Cosmogenic backgrounds

 ^{11}C produced by cosmic rays interaction identified via three fold coincidence (TFC):

$$\mu + {}^{12}C \to \mu + {}^{11}C + n < n + p \to d + \gamma_{2.2 MeV}$$

Data-set divided in two samples: **TFC-tagged** (enriched in ${}^{11}C$) and **TFC-subtracred** (depleted in ${}^{11}C$)

Challenges of CNO detection

The rate of $\nu(CNO)$ is marginal (expected 3-5 cpd/100ton) with respect to the backgrounds:

Challenges of CNO detection

The rate of $\nu(CNO)$ is marginal (expected 3-5 cpd/100ton) with respect to the backgrounds:

The degeneracy between $\nu(CNO)$, $\nu(pep)$ and ^{210}Bi spectral shapes limits Borexino sensitivity:

No sensitivity to ν (CNO) signal, but rather to the sum of the interaction rates

Strong correlation between $\nu(CNO)$, ²¹⁰Bi and $\nu(pep)$ require **independent constraint**:

- $\nu(pep) = 2.74 \pm 0.04$ cpd/100t (solar luminosity constraint);
- ${}^{210}Bi \le 11.5 \pm 1.3$ cpd/100t (link with ${}^{210}Po$, viable solution only in Phase-III).

For more details see the presentation by Riccardo Biondi "Strategy of detection for solar CNO neutrinos and temperature stabilization of the borexino detector" (atticon12561)

Multivariate fit

Simultaneous fit of data through the optimization of the binned maximum likelihood:

improve external backgrounds rejection

Multivariate analysis technical features:

36.4% of exposure with 94.5% of ^{11}C

- Energy window: 0.32 2.64 MeV
- Phase-III data-set: July 2016 Feb 2020 (1072 days livetime)
- Fiducial Volume cut: r < 2.8 m & -1.8m < z < 2.2m)
- Three fold coincidence veto
- Free parameters: $\nu(CNO)$, $\nu(^{7}Be)$, ^{11}C , ^{85}Kr and externals
- Constrained parameters: $\nu(pep)$ and ^{210}Bi

First direct detection of CNO neutrinos

INFŇ

Results and conclusions

Best fit results: $7.2^{+3.0}_{-1.7}$ cpd/100 t (stat + syst)

The abscence of CNO signal is disfavored at 5 σ

First direct detection ever of CNO solar neutrinos

Thank you for your attention

Borexino Collaboration

