

106° CONGRESSO NAZIONALE SIF

14-18 Settembre 2020

THE XENON DARK MATTER PROJECT LATEST XENON1T RESULTS AND XENONNT PROJECTIONS

PIETRO DI GANGI | INFN - Università di Bologna

THE XENON COLLABORATION

THE XENON EXPERIMENT

ENERGY RECONSTRUCTION from combined S1 and S2 signals

3D VERTEX RECONSTRUCTION X,Y from S2 pattern in top PMT array **Z** from drift time

de Volume fiducialization Single/multiple scatters discrimination

RECOIL TYPE IDENTIFICATION (ER vs NR) S2/S1 ratio is much larger for ER than NR

XENON1T RESULTS

INFN

2018 | PRL 119, 181301 SR0+SR1 Main WIMP search

2019 | PRL 123, 251801 Light dark matter

2019 | PRL 123, 241803 Migdal effect

WORLD'S STRONGEST LIMITS ABOVE WIMP MASSES OF 100 MeV/c² (but 2-3 GeV/c²)

2019 | PRL 122, 141301 Spin-dependent WIMPs BEST LIMITS ON WIMP-NEUTRON COUPLING FOR WIMP MASSES ABOVE 3 GeV/c²

2019 | PRL 122, 141301 WIMP-pion interaction FIRST EVER RESULT ON WIMP-PION COUPLING

2019 | Nature 568, 532-535 ¹²⁴Xe double e⁻ capture discovery THE RAREST PROCESS EVER DIRECTLY OBSERVED IN HUMAN HISTORY

2020 | PRD (Submitted) Observation of excess electronic recoil events NEW PHYSICS HINT OR NEW BACKGROUND?

ELECTRONIC RECOILS IN XENON1T

LOW-ENERGY EXCESS BETWEEN 1-7 keV

https://arxiv.org/abs/2006.09721

BACKGROUND MODEL

from GEANT4 MC simulations

Good match between data and expectations in [1, 200] keV range

FITTED BACKGROUND LEVEL: 76 ± 2 events/(t·y·keV) LOWEST EVER IN [1, 30] keV

OBSERVED EVENTS IN [1, 7] keV 285

EXPECTED 232 ± 15

226.9 live-days 1 tonne fiducial mass ER single-scatters Standard data quality cuts

ER EXCESS INTER AXIONS, V MAGNETIC MOI	PRETATION MENT OR ³ H BACKGROUND?
tritium 3.2σ solar 3.2σ axions	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
axion vs tritium 2.1σ EXCESS SIGNIFICANCE OVER BACKGROUND-ONI Y	$ \begin{array}{c} $

- **TRITIUM ³H** | Fitted (6.2±2.0) × 10⁻²⁵ mol/mol ³H/Xe concentration POSSIBLE ATMOSPHERIC ³H IN MATERIALS BUT DIFFICULT TO CONFIRM/EXCLUDE SUCH A TINY CONCENTRATION
- **SOLAR AXIONS** | Non-null coupling for either ABC or Primakoff axions AXIONS ARE A LIGHT DARK MATTER CANDIDATE. SOLAR AXIONS CAN BE DETECTED (KINETIC ENERGY ~keV)
- **SOLAR AXIONS + TRITIUM** | Favoured at 2.1 σ over the ³H hypothesis WHEN BOTH AXIONS AND TRITIUM ARE INCLUDED, THE BEST-FIT OF TRITIUM IS ZERO
- **ANOMALOUS NEUTRINO MAGNETIC MOMENT** | μ_{ν} =[1.4, 2.9] × 10⁻¹¹ $\mu_{\rm B}$ THIS WOULD IMPLY THAT NEUTRINO IS A MAJORANA FERMION. WHEN 3H IS INCLUDED, THE SIGNIFICANCE LOWERS TO 0.9 σ .

THE XENONnT EXPERIMENT

INFŃ

ALMOST READY FOR THE NEXT PHASE!

ACTIVE LXe MASS $2 \rightarrow 6 t$

248 → 494 PMTs

1/6 **ER BACKGROUND** Improved LXe purification Radon distillation

SEE NEUTRON VETO TALKS BY F. AGOSTINI AND A. MANCUSO

INFŃ

XENONnT PROJECTIONS

EXPECTED BACKGROUND

https://arxiv.org/abs/2007.08796

XENONnT SIMULATIONS

- G4 DETECTOR MODELISATION
- TPC OPTICAL SIMULATIONS
- G4 PARTICLE GENERATION AND PROPAGATION
- "XENON1T" LXe RESPONSE MODEL

BACKGROUND EXPECTATIONS

- RADIOASSAY OF NEW DETECTOR COMPONENTS
- UPDATED β-SPECTRA OF INTRINSIC CONTAMINANTS
- UPDATED SOLAR ν SPECTRUM
- 87% NEUTRON VETO EFFICIENCY

	1	Expectation value (μ) in 20 ty	
	Observable ROI	Reference signal region	(ξ)
Background			
ER	2610	1.69	
Neutrons	0.29	0.15	50%
$CE\nu NS$ (Solar ν)	7.61	5.41	4%
${ m CE} u { m NS} \left({ m Atm} {+} { m DSN} ight)$	0.82	0.36	20%
WIMP signal			
$6{ m GeV/c^2}~~(\sigma_{ m DM}=3 imes10^{-44}{ m cm^2})$	25	19	
$50{ m GeV/c^2}~(\sigma_{ m DM}=5 imes10^{-47}{ m cm^2})$	186	88	
$1{ m TeV/c^2}~~(\sigma_{ m DM}=8 imes10^{-46}{ m cm^2})$	286	118	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Neutron	Observable ROI Reference signal regio 10 ⁰ 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 3 10 20 30 40 50	on

8

INFŃ

XENONnT PROJECTIONS

SENSITIVITY

https://arxiv.org/abs/2007.08796

XENONNT IS RIGHT BEHIND THE CORNER STAY TUNED

 \bigcirc

CONTACT US xe-pr@lngs.infn.it

XENON OFFICIAL WEBSITE www.xenonexperiment.org

XENON BOUOGNA WEBSITE web.bo.infn.it/xenon

facebook.com/XENONexperiment

instagram.com/xenon_experiment

PIETRO DI GANGI digangi@bo.infn.it