

Società Italiana di Fisica

Search for neutrinoless double beta decay with CUPID-0

Emanuela Celi (Gran Sasso Science Institute) on behalf of CUPID-0 collaboration 106° congresso SIF

Neutrinoless double beta decay

Why to search for $ov\beta\beta$?

- Lepton Number Violation process ($\Delta L = 2$), not conserving the B-L symmetry of the SM;
- Validation of the **see-saw mechanism**;
- Neutrinos coincide with their antiparticles (Majorana particles);
- Limits on neutrinos absolute mass scale: $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) \left| M^{0\nu} \right|^2$

2v mode:

- Allowed in SM;
- Already observed for several nuclei;
- Half-lives of the order ~ 10^{18} - 10^{21} y;

ov mode:

- Never observed;

Experimental search

Main experimental signature: Monochromatic peak centered at $Q_{\beta\beta}$ over the $2\nu\beta\beta$ tail; Two body decay: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$ 1.0_r Counts / keV (normalized) 2νββ 0.8 0.6 0νββ 0.4 0.2 0.0 $Q_{\beta\beta}$

Energy [keV]

Experimental sensitivity:

$$S_{0\nu} \propto \epsilon \sqrt{\frac{M \cdot T}{b \cdot \Delta}}$$

- *ε*: detection **efficiency**;
- *M*: source mass [kg];
- T: measure time [y];
- *b*: **background rate** [counts/keV/kg/y];
- Δ : experimental **resolution** [keV];

At zero background limit: $S_{0\nu} \propto \epsilon \cdot M \cdot T$

The CUORE experiment

- Ton-scale: 998 TeO2 crystals;
- Total ¹³⁰Te mass: 206 kg;
- $Q_{\beta\beta}(^{130}\text{Te}) = 2530 \text{ keV};$

- Main background: **degraded** *α* **particles**;
- B.I.: $(1.4 \pm 0.2) \times 10^{-2} \text{ counts/keV/kg/y};$

For the bolometric technique and the thermal model see S. Quitadamo's talk (link).

Needs for particle ID with cryogenic calorimeters...

Scintillating cryogenic calorimeters

Scintillating calorimeters operating at cryogenic temperature ~10 mK \rightarrow double read-out via heat & light.

- **Source** = **detector** \rightarrow High efficiency;
- Excellent energy resolution (<1%);
- Modular design \rightarrow large scalability;
- Possibility to study **different isotopes**;
- $LY_{\alpha} \neq LY_{\beta}$ and shape parameters allow Particle identification;

More on I.Nutini's invited talk (link);

Emanuela Celi - GSSI

6

Detected li

The CUPID project

- Next generation ton-scale experiment based on enriched Li₂¹⁰⁰MoO₄ scintillating crystals (arXiv:1907.09376);
- $Q_{\beta\beta}(^{100}MO) = 3035 \text{ keV};$
- Target BI ~ 10⁻⁴ counts/keV/kg/y;
- Expected to cover the entire inverted mass hierarchy of neutrino mass;
- Pilot experiments:
 - **CUPID-o** \rightarrow enriched Zn⁸²Se crystals;
 - **CUPID-Mo** \rightarrow enriched Li₂¹⁰⁰MoO₄ crystals;

IDentification

For CUPID R&D See A. Ressa's talk (link)

30 Zn⁸²Se enriched at 96% in ⁸²Se dyind rof 5.5 cm high and 4.4 cm in diameter) for a total mass of 7 kg of ⁸²Se.

36 germanium light detectors (disk

of 4.4 cm in diameter a thick), one face coatec crystal surrounded by reflective foil background in the ROI 10-3 counts/(keV kg y)

The fir

 3 Zn⁸²Se surrounded by VM200 4 Ge light detectors with ⁵⁵Fe x

Only show pictur Opera under the Ha Labor Nazio Sass Reprc result the 3

4 ligh

 \leq

Enriched Zn⁸²Se - 01

CUPID-O: search for 82Se Ovßß

- Final exposure: **9.95 kg** × **y**;
- Resolution at $Q_{\beta\beta}$: (20.05 ± 0.34) keV;
- $T_{1/2}$ ($0\nu\beta\beta^{82}Se$) > 3.5 × 10²⁴ y (90% C.I. limit);

5.0 × 10²⁴ y (Median Sensitivity);

Selecting only particle signals: \Rightarrow 3.2 × 10⁻² counts/(keV kg y) **Selecting only** β/γ : \Rightarrow 1.3 × 10⁻² counts/(keV kg y) **Removing 208Tl events:** \Rightarrow 3.5 × 10⁻³ counts/(keV kg y)

CUPID-0: background model

Crucial step towards the comprehension of the background in experiments based on scintillating calorimeters.

Component	ROI_{bkg} rate	Source	ROI_{bkg} rate
	(10 counts/(keV kg yr))		(10 +counts/(keV kg yr))
		²³² Th– bulk	$3.4 \pm 0.6 \pm 0.1$
Crystals	$11.7 \pm 0.6 \stackrel{+1.6}{_{-0.8}}$	²³² Th–surf	$3.4 \pm 0.5 \stackrel{+1.0}{_{-0.7}}$
		²³⁸ U–surf	$4.9 \pm 0.3 \ ^{+1.3}_{-0.3}$
Reflectors & Holder	$2.1 \pm 0.2 + 2.2$	²³² Th	< 3.3
	$2.1 \pm 0.3 - 1.0$	²³⁸ U	$1.8 \pm 0.3 \ ^{+1.4}_{-0.9}$
Cravestat & Shields	$5.0 \pm 1.2 + 7.2$	²³² Th	$3.5 \pm 1.3 \ ^{+7.4}_{-3.3}$
Cryosiui & Shieius	$3.9 \pm 1.3 - 2.9$	²³⁸ U	$2.4 \pm 0.4 \ ^{+4.1}_{-0.7}$
Subtotal	$19.8 \pm 1.4 \ ^{+6.6}_{-2.7}$		
Muons	$15.3 \pm 1.3 \pm 2.5$		
2 uetaeta	$6.0 \pm 0.3 \ (< 3 \times 10^{-6} \ \text{counts}/(\text{keV kg yr}) \ \text{in} \ [2.95-3.05] \ \text{MeV range})$		
Total	$41 \pm 2 {+9 \atop -4}$		
Experimental	$35 \ _{-9}^{+10}$		

ROI (2.8 - 3.2 MeV)

Emanuela Celi - GSSI

- ~44% muons;
- ~33% contaminations ZnSe crystals;
- ~17% cryostat;
- ~6% reflecting foil and holders;

CUPID-0: Measurement of ⁸²Se 2vββ half-life

$T_{1/2}^{2\nu} = [8.60 \pm 0.03(\text{stat})_{-0.13}^{+0.19}(\text{syst})] \times 10^{19} \text{ yr.}$

Emanuela Celi - GSSI

Conclusion & future perspectives

Other physical results...

- First search for Lorentz violation in double beta decay with scintillating calorimeters
- → Phys. Rev. D 100, 092002 (2019)
- Search of the neutrino-less double beta decay of ⁸²Se into the excited states of ⁸²Kr with CUPID-0
- → Eur. Phys. J. C (2018) 78:888
- Search for neutrinoless double beta decay of ⁶⁴Zn and ⁷⁰Zn with CUPID-0
- → Eur. Phys. J. C (2020) 80: 702

Emanuela Celi - GSSI

Upgrade

- Removal of reflecting foils;
- Muon veto surrounding cryostat;
- Internal copper shield;

Confirmation of the background model

Thanks for the attention!

