Enhanced Photon-Pair Generation in Nonlinear Metasurfaces through Bound States in the Continuum

106° congresso nazionale – Società Italiana di Fisica

<u>Andrea Mazzanti¹</u>, Matthew Parry², Alexander N. Poddubny^{2,3},

Giuseppe Della Valle¹, Paolo Laporta¹, Dragomir N. Neshev², Andrey A. Sukhorukov²

¹ Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy

² ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia

³ Ioffe Physical Technical Institute, 26 Politekhnicheskaya, 194021, St Petersburg, Russian Federation

Andrea.Mazzanti@polimi.it

Australian National University

POLITECNICO MILANO 1863

I. Motivations

II. Metasurface Design and Nonlinear Performance

III. Characterization of Photon-Pair Generation

IV.Conclusions

Photon Pair Generation – Towards Nanoscale

SPDC in quadratically nonlinear crystal

Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci Phys. Rev. Lett. **110**, 160502 – Published 18 April 2013

 $\omega_{i}^{(+\theta)} \equiv \mathbf{V}$ $\omega_{i}^{(-\theta)} \equiv \mathbf{H}$ $\omega_{i}^{(+\theta)} = \mathbf{H}$

Laser Photonics Rev. 10, No. 1, 131–136 (2016) / DOI 10.1002/lpor.201500216

Tunable generation of entangled photons in a nonlinear directional coupler

Frank Setzpfandt^{1,2,*}, Alexander S. Solntsev^{1,*}, James Titchener¹, Che Wen Wu¹, Chunle Xiong², Roland Schiek³, Thomas Pertsch⁴, Dragomir N. Neshev¹, and Andrev A. Sukhorukov¹

September 1, 2011 / Vol. 36, No. 17 / OPTICS LETTERS

Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide C. Xiong,^{1,*} Christelle Monat,^{1,2} Alex S. Clark,^{1,3} Christian Grillet,¹ Graham D. Marshall,⁴ M. J. Steel,⁴ Juntao Li,³

Liam O'Faolain,⁵ Thomas F. Krauss,⁵ John G. Rarity,³ and Benjamin J. Eggletor

Achieving sub-µm scale? Nonlinear nano-resonators and

metamaterials!

Metasurfaces for SPDC

Mie resonances

- Broad emission spectrum following from Mie resonance Q-factor
- Low rate (35 Hz) due to limited field enhancement in the resonator

Marino *et al.*, Optica 6, 1416 (2019)

106° congresso nazionale – Società Italiana di Fisica

Kodigala, *et al.*, *Nature*, **541**, 196 (2017) Ha, *et al.*, *Nat. Nanotech.*, **13**, 1042 (2018)

Extended Photonic crystaltype BICs:

 BICs can be implemented by the symmetry protection of collective modes that do not radiate

Metasurfaces for SPDC

- Broad emission spectrum following from Mie resonance Q-factor
- Low rate (35 Hz) due to limited field enhancement in the resonator

Marino et al., Optica 6, 1416 (2019)

Kodigala, et al., Nature, 54 Ha, et al., Nat. Nanotech.,

Metasurface Design

1D *nanofins* metasurface with subwavelength periodicity Highly directional emission at BIC resonance Crystal axes oriented to optimize nonlinear efficiency Height = 860 nmWidth = 386 nmPeriod = 528 nmλ_{BIC}≈µm v [THz]193.48 234.97 187.38 Al_{0.18}Ga_{0.82}As 528 nm

106° congresso nazionale – Società Italiana di Fisica

lacksquare

No Diffraction orders!

Metasurface Design

Quantum-Classical Correspondence

- Study nonlinear sum frequency generation in AlGaAs metasurface
- Predict quantum photon-pair rate through SPDC based on general Green function solution

SFG Performance

- Peak SFG efficiency is orders of magnitudes higher than thin films or Mie nano-resonators
- SFG intensity is approximately proportional to the product of the fields inside the nanofin

106° congresso nazionale – Società Italiana di Fisica

BIC Dispersion

- For SPDC every radiation channel has to be considered
- The BIC has a parabolic dispersion

Photon-Pair Generation Rate

106° congresso nazionale – Società Italiana di Fisica

- We designed a nonlinear metasurfaces optimized for nonlinear three wave mixing in terms of, spatial coherence, narrow spectrum, sharp emission directionality and generation efficiency
- Our approach in the design is applicable to different quadratically nonlinear material platforms
- We estimate a photon pair generation rate of 5.4 KHz for pump power of 2 mW

Thank you for your attention