Ultrafast Dichroism via Photoinduced Symmetry Breaking in Plasmonic Metasurfaces

<u>Andrea Schirato</u>, Margherita Maiuri, Andrea Toma, Silvio Fugattini, Remo Proietti Zaccaria, Paolo Laporta, Peter Nordlander, Giulio Cerullo, Alessandro Alabastri, and Giuseppe Della Valle*

*giuseppe.dellavalle@polimi.it

106° Congresso Nazionale SIF

14th-18th September 2020

Introduction Motivations

Ultrafast control of light at the nanoscale is attracting increasing attention and inspiring novel paradigms for high speed all-optical modulation:

- Metasurfaces upon ultrashort illumination
- Plasmonic nanostructure optical nonlinearities

Introduction Motivations

Ultrafast control of light at the nanoscale is attracting increasing attention and inspiring novel paradigms for high speed all-optical modulation:

- Metasurfaces upon ultrashort illumination
- Plasmonic nanostructure optical nonlinearities

So far, realistic devices face major speed limits due to:

- Photogenerated hot carriers relaxation towards lattice (~ps)
- Lattice relaxation towards environment (~ns)

Introduction Motivations

Ultrafast control of light at the nanoscale is attracting increasing attention and inspiring novel paradigms for high speed all-optical modulation:

- Metasurfaces upon ultrashort illumination
- Plasmonic nanostructure optical nonlinearities

So far, realistic devices face major speed limits due to:

- Photogenerated **hot carriers relaxation** towards lattice (~ps)
- Lattice relaxation towards environment (~ns)

All-optical broadband modulation with **full return to zero within 1 ps** remains an open challenge, e.g. for ultrafast **polarisation** switching

> What is faster than hot carrier relaxation?

How to exploit such effect for optical modulation?

> What is faster than hot carrier relaxation?

 \blacktriangleright How to exploit such effect for optical modulation?

Spatial inhomogeneities Hot carrier photogeneration

Spatial inhomogeneities Hot carrier photogeneration

Spatial inhomogeneities Hot carrier photogeneration

Photoexcitation creates a **spatially non-uniform** hot carrier distribution dictated by the **resonant mode** of the plasmonic structure and evolving in time as a **diffusion** process

> What is faster than hot carrier relaxation?

How to exploit such effect for optical modulation?

➤ What is faster than hot carrier relaxation?

> The onset of nanoscale spatial inhomogeneities of hot carriers

➢ How to exploit such effect for optical modulation?

➤ What is faster than hot carrier relaxation?

> The onset of nanoscale spatial inhomogeneities of hot carriers

How to exploit such effect for optical modulation?

Transient symmetry breaking Photoinduced sensitivity to polarisation

Although the symmetric geometry, **asymmetric** hot carrier spatial distribution opens a **transient** symmetry-breaking window: the structure exhibits **polarisation dependence**^[5-7]

➤ What is faster than hot carrier relaxation?

> The onset of nanoscale spatial inhomogeneities of hot carriers

➢ How to exploit such effect for optical modulation?

- ➢ What is faster than hot carrier relaxation?
 - > The onset of nanoscale spatial inhomogeneities of hot carriers
- How to exploit such effect for optical modulation?
 Transient symmetry breaking in highly symmetric structures
- > What can be thus achieved?

- > What is faster than hot carrier relaxation?
 - > The onset of nanoscale spatial inhomogeneities of hot carriers
- How to exploit such effect for optical modulation?
 Transient symmetry breaking in highly symmetric structures
- > What can be thus achieved?

Broadband dichroism Pump-probe differential transmittance

Broadband dichroism Pump-probe differential transmittance

7/10

Broadband dichroism Pump-probe differential transmittance

- ➢ What is faster than hot carrier relaxation?
 - > The onset of nanoscale spatial inhomogeneities of hot carriers
- How to exploit such effect for optical modulation?
 Transient symmetry breaking in highly symmetric structures
- > What can be thus achieved?

- > What is faster than hot carrier relaxation?
 - > The onset of nanoscale spatial inhomogeneities of hot carriers
- How to exploit such effect for optical modulation?
 Transient symmetry breaking in highly symmetric structures
- > What can be thus achieved?
 - > Broadband transient dichroism with fully reversible recovery within 1 ps

Conclusions and Perspectives

- The inhomogeneous distribution of photoexcited carriers is demonstrated to induce a spatio-temporal perturbation breaking the optical symmetry of the metasurface
- Photoinduced anisotropy, resulting in broadband dichroism, collapses within 1 ps, when excitation returns to symmetric state

Conclusions and Perspectives

- The inhomogeneous distribution of photoexcited carriers is demonstrated to induce a spatio-temporal perturbation breaking the optical symmetry of the metasurface
- Photoinduced anisotropy, resulting in broadband dichroism, collapses within 1 ps, when excitation returns to symmetric state
- > Our results can disclose unprecedented routes for **ultrafast all-optical** light **control**
- > Ultrafast dichroic devices for **high-speed** modulation of light **polarisation**
- Optimised platforms for hot-carrier-driven photocatalysis

Acknowledgments and References

Many thanks to M. Maiuri, A. Toma, S. Fugattini, R. Proietti Zaccaria, P. Laporta, P. Nordlander, G. Cerullo, A. Alabastri, G. Della Valle

Thanks for your attention

[1] Sun, C.-K., Vallée, F., Acioli, L.H., Ippen, E.P. & Fijumoto, J.G. *Phys Rev. B* 50, 15337 (1994).
[2] Conforti, M. & Della Valle G. *Phys. Rev. B* 85, 245423 (2012).

- [2] Contoru, W. & Dena Vane G. *Phys. Rev. D* **85**, 243423 (2012) [3] Zavelani-Rossi, M., et al. *ACS Photon.* **2**, 521-529 (2015).
- [4] Kanavin, A.P. et al. *Phys. Rev. B* **57**, 698-703 (1998).
- [5] Guerrisi, M., Rosei, R. & Winsemius P. Phys Rev B 12, 557 (1975).
- [6] Rosei, R., Antonangeli, F. & Grassano, U.M. Surf. Sci 37, 689-699 (1973).
- [7] Polli, D., Lüer, L. & Cerullo, G. Rev. Sci. Instrum. 78, 103108 (2018).

