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Our goal: enhanced SHG in Photonic Crystal Cavity

Doubly resonant cavity in
AlGaAs suited for SHG in
telecom wavelengths:

λFH ≈ 1550nm
λSH ≈ 775nm

Why AlGaAs?

1 χ(2) ≈100 pmV−1

2 transparency @ λ ≈ 775nm
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Highly efficient second harmonic generation (SHG) recipe

SHG in Photonic cavities

Temporal confinement → High quality factor Q

Spatial confinement → modal volume ≈ (λ/n)3

High overlap β̄ between first (FH) and second harmonic (SH)

β̄ =

∫
dr

∑
ijk χ̄

(2)
ijk E∗

2ωiEωjEωk(∫
dr εω(r)|Eω|2

) (∫
dr ε2ω(r)|E2ω|2

)1/2

√
λ3

FH (1)

Figure of merit to be optimized:

Q2
FHQSH|β̄|
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Design steps

1 Calculate photonic
bandstructure with finite
difference time domain
(FDTD)

2 Tune photonic FH and SH
modes to doubly resonance:
ω2 = 2ω1 with particle
swarm optimization (PSO)

3 Confine FH and SH modes
with a proper cavity design

4 FDTD simulation of the
cavity, and calculate QFH,
QSH and β̄
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Bandstructures features

1 Main [1,0,0] AlGaAs χ(2)

elements are xyz and
permutations

2 FH below the light line

3 SH above the light line, in
the continuum of ”leaky
modes”

1 TE-like (even) polarization
for FH and TM-like (odd)
for SH

2 FH mode has naturally
infinite Q

3 SH = bound state in the
continuum, infinite Q
despite it lies in the light
cone
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Calculated photonic bandstructures

Different refractive index for TE- and TM-like simulations
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Doubly resonance tuning with PSO

PSO parameters:

FOM =

∣∣∣∣ωSH − 2ωFH

ωSH

∣∣∣∣
r∗/a = 0.175

d∗/a = 0.24

(ωFHa)/(2πc) ≈ 0.335

(ωSHa)/(2πc) ≈ 0.665
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Final cavity

Heterostructure with gentle confinment: inner radius r∗, gradually
increasing

QFH ≈ 105, QSH ≈ 103, |β̄|2 ≈ 10−5,
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Topological properties

Phase discontinuity → topological charge +1
Emission of vortex beam
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Summary

First AlGaAs doubly resonant photonic crystal cavity @
λ ≈ 1550 nm

Theoretical efficiency for SHG better than previous similar
devices

Calculated topological charge +1 for SH mode

Future perspectives: possible realisation and experimental
measurements
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