

A first-principles study of the switching mechanism in GeTe-InSbTe phase-change superlattices

Chiara Ribaldone, **Daniele Dragoni**, and Marco Bernasconi

Department of Materials Science University of Milano - Bicocca

daniele.dragoni@unimib.it

SIF 2020 - Milano

Phase change memories (PCM)

- Non-volatile memories for electronic devices
- Access time (~10-100 ns) comparable to highly fast volatile RAM
- Memory bit: nanometric region of chalcogenide materials
- Ge-Sb-Te alloys on pseudobinary GeTe-Sb₂Te₃ tie line

Ge–Sb–Te (GST) Ternary diagram

Zhang, Nat. Rev. Mater. 4, 150 (2019)

Phase change memories (PCM)

- Rapid & reversible crystal-amorphous GST switching upon Joule heating -SET/RESET programming current pulses
- Metallic Crystal vs. Semiconducting Amorphous
- High electrical contrast enables logical states discrimination in read-out

Zhang, Nat. Rev. Mater. 4, 150 (2019)

Interfacial phase change memories (iPCM)

- Based on ordered stacking of GeTe-Sb₂Te₃ layers
- Superior switching performance over conventional GST-based PCM
- Lower power consumption, improved cyclability, ...

Which mechanism for iPCM switching ?

Switching mechanism & structure of logical memory states are still debated

Which mechanism for iPCM switching ?

Switching mechanism & structure of logical memory states are still debated

SCENARIO #1:

Which mechanism for iPCM switching?

Switching mechanism & structure of logical memory states are still debated

SCENARIO #1:

GeTe	Structure \rightarrow SuperLattice (SL) – alternation of (GeTe) ₂ and Sb ₂ Te ₃ blocks
Sb ₂ Te ₃	Simpson, Nat. Nanotechnol. 6, 501 (2011)
GeTe Sb ₂ Te ₃	Switching $ ightarrow crystal$ -crystal transformation with GeTe rearrangement in SL.
GeTe	Low-(<i>Ferro</i>) vs high-resistance (<i>Inverted Petrov</i>) states via two-steps flipping process
Sb ₂ Te ₃	(vertical + lateral) Kolobov, ACS Omega 2, 6223 (2017)

Yu, Sci. Rep. 5, 12612 (2015)

SCENARIO #2:

GST	
GST	

 $\textbf{Structure} \rightarrow \text{tendency of } Sb_2Te_3$ in SL grown by MBE to incorporate GeTe Momand, Nanoscale 7, 19136 (2015) bilayers to form GST-block Wang, Cryst. Growth Des. 16, 3596 (2016)

Switching \rightarrow either thermally driven with amorphization within GST blocks or driven by reconfiguration of bilayer defects (Sb-rich/Te) at GST vdW gap

> Boniardi, Phys. Status Solidi RRL 13, 1800634 (2019) Kolobov, ACS Omega 2, 6223 (2017) Saito, Appl. Phys. Lett. 114, 132102 (2019)

GeTe-In₃SbTe₂ superlattices

GeTe

GeTe

Sb₂Te₃

- Conceive alternative SL structure preventing GeTe-Sb₂Te₃ mixing into GST
- Retain SCENARIO #1 crystal-crystal switching mechanism
- Yu, Sci. Rep. 5, 12612 (2015)

GeTe

GeTe

- Sb₂Te₃ replacement Study geometry, electronic structure and switching mechanism of (GeTe)₃-In₃SbTe₂ SL
- In₃SbTe₂ (IST) is known phase change material with rocksalt crystalline phase and high crystallization temperature
- Use first-principles DFT methods

(GeTe)₃-In₃SbTe₂ structure

(GeTe)₃-In₃SbTe₂ best candidate structure:

- Geln₃SbTe₃ and (GeTe)₂ block Alternation

 Low/high-resistance (Ferro/Inverted Petrov) configurations as in (GeTe)₂-Sb₂Te₃
- Large 2% biaxial tensile strain of GeTe bilayers, Strain route to reduce Activation energy^[1] - only 0.7%^[2] in (GeTe)₂-Sb₂Te₃
- 3. Low formation energy for the Ferro ground-state phase wrt parent compounds 20 meV/at

[1] Kalikka, Nat. Commun. 7 11983 (2016) [2] Yu, Sci. Rep. 5, 12612 (2015)

(GeTe)₃-In₃SbTe₂ electronic properties

- Both Ferro and Inverted Petrov appear metallic from SO-corrected DOS
- Most of metallicity due to in-plane contributions ascribed to In₃SbTe₂
- Out-of-plane conductivity matters for iPCM

(GeTe)₃-In₃SbTe₂ conductivity

Electrical contrast in out-of-plane direction between Ferro and Inverted Petrov (IP) phases from *dc* conductivity

$$\sigma_{\mu\nu} \propto \sum_{\alpha,\mathbf{k}} \mathbf{v}_{\mu}(\alpha,\mathbf{k}) \mathbf{v}_{\nu}(\alpha,\mathbf{k}) \delta(\varepsilon_{\mathbf{F}} - \varepsilon_{\alpha}(\mathbf{k}))$$

$$\sigma_{zz}^{Ferro}/\sigma_{zz}^{IP} = 3.6 \qquad \mbox{Similar value for GeTe-Sb}_2\mbox{Te}_3\mbox{SL}_{Nakamura, Nanoscale 9, 9386 (2017)} \\ \sigma_{zz} \sim 10^4\ S/cm \qquad \mbox{Similar value for GeTe-Sb}_2\mbox{Te}_3\mbox{SL}_{Nakamura, Nanoscale 9, 9386 (2017)} \\ \label{eq:scalar}$$

- Ferro as Low-Resistive State (LRS)
- Inverted Petrov as High-Resistive State (HRS)

SET-RESET activation barriers

Nudged elastic band (NEB) method to compute Activation barriers between LRS and HRS states

Adopt the vertical + lateral flipping path proposed for $(GeTe)_2$ -Sb₂Te₃

SET-RESET activation barriers

RESET (F0-IP1-IP0) **SET (IP0-F2-F0)** Energy [eV] Energy [eV] (GeTe)₃-In₃SbTe₂ 2.5 (GeTe)₃-In₃SbTe₂ (GeTe)₂-Sb₂Te₃ Yu et al.^[1] □ (GeTe)₂-Sb₂Te₃ Yu et al.^[1] 2.0 1.0 0.5 0.0 0.5 -0.5 0.0 **4....** 0.0 0.5 1.5 2.0 0.5 1.5 2.0 10 Reaction coordinate Reaction coordinate Inverted Inverted F7 IP1 Ferro (F0) Ferro (F0) Petrov (IP0) Petrov (IP0) **RESET** activation energy: **SET** activation energy: $(GeTe)_{3}$ -In₃SbTe₂ = 2.41 eV $(GeTe)_{3}$ -In₃SbTe₂ = 1.93 eV (GeTe)₂-Sb₂Te₃ $(GeTe)_2$ -Sb₂Te₃ = 2.84^[1] eV = 2.56^[1] eV $\Delta = -0.15 \, eV$ $\Delta = -0.91 \, eV$

Summary

- (GeTe)₃-In₃SbTe₂ as an alternative to (GeTe)₂-Sb₂Te₃ for iPCM realization
- In₃SbTe₂ used to possibly prevent mixing of Sb₂Te₃ and GeTe blocks
- New SL with 2% biaxially strained (GeTe)₂ blocks
- Ferro- and Inverted Petrov-like configurations identified as LRS/HRS
- Conductivity contrast similar to (GeTe)₂-Sb₂Te₃
- Reduction of activation energies for SET/RESET transformation \rightarrow Lower power consumption as compared to (GeTe)₂-Sb₂Te₃

Thank you