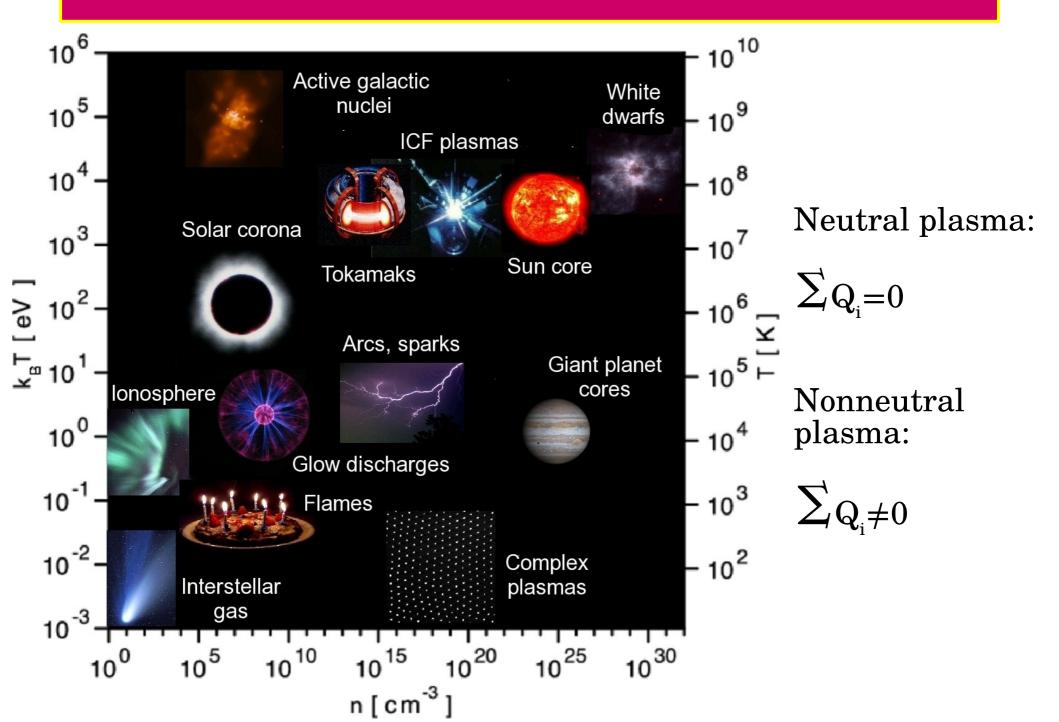
Resonant control of Kelvin-Helmholtz modes of arbitrary wavenumber by rotating electric fields in magnetized nonneutral plasmas

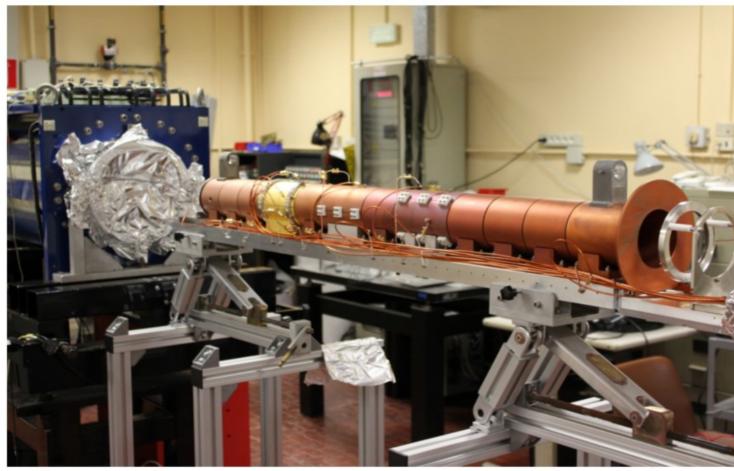
N. Panzeri, G. Maero, M. Romé and R. Pozzoli

UNIVERSITÀ DEGLI STUDI DI MILANO

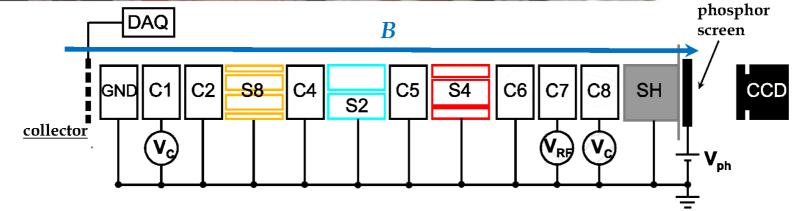
WHAT IS PLASMA?



ELTRAP



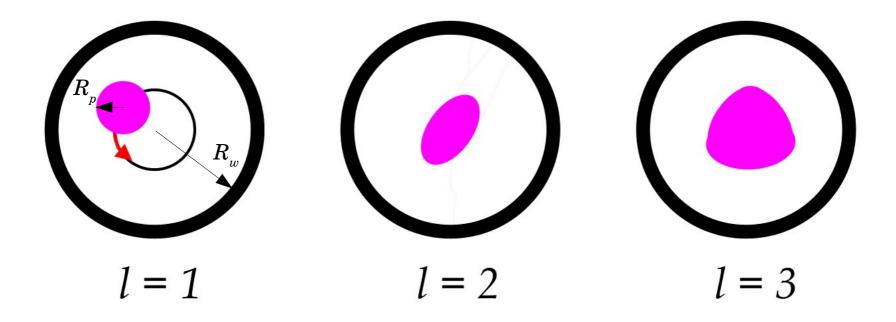
- L<1 m
- Ø=90 mm
- B<0.2 T
- $V_{con} = \pm 100 V$
- p~10⁻⁸ mbar
- $n_e \sim 10^7 cm^{-3}$
- $\nu_{lon} \sim MHz$ $\nu_{E \times B} \sim kHz$ $T_e \sim 10 \text{ eV}$



FLUID ANALOGY

2D Ideal Fluid	2D Electron Plasma
$\frac{\partial \zeta}{\partial t} + \mathbf{v} \cdot \nabla \zeta = 0$	$\frac{\partial n}{\partial t} + \mathbf{v} \cdot \nabla n = 0$
$\nabla^2 \psi = \zeta$	$\nabla^2 \phi = 4\pi e n$
$\mathbf{v} = \mathbf{e}_z \times \nabla \psi$	$\mathbf{v} = \frac{\mathbf{e}_z \times \nabla \phi}{B} c$
$\zeta = (\nabla \times \mathbf{v}) \cdot \mathbf{e}_z$	$\zeta = \frac{c}{B} \nabla^2 \phi = \frac{4\pi ec}{B} n$
$\psi(\text{wall}) = \text{constant}$	$\phi(\text{wall}) = \text{constant}$

DIOCOTRON MODE

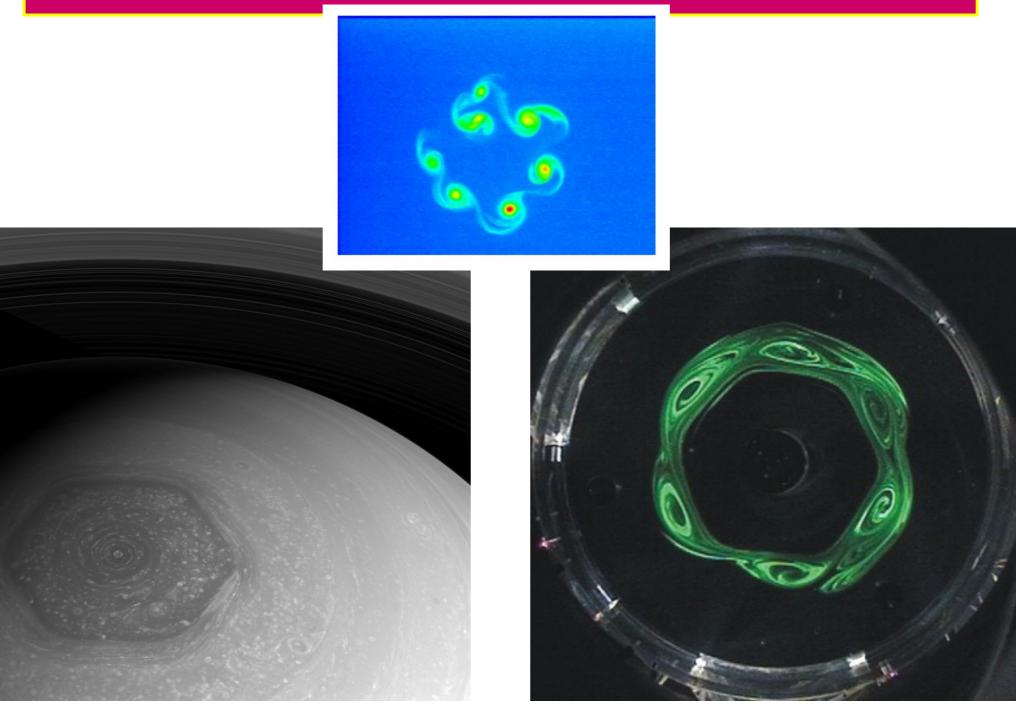


$$n_e(r,\theta,t) = n_e^0(r) + \sum_{l=-\infty}^{\infty} \delta n_e^l(r) \exp(il\theta - iwt)$$

$$\phi(r,\theta,t) = \phi^0(r) + \sum_{l=-\infty}^{\infty} \delta \phi^l(r) \exp(il\theta - iwt)$$

$$\Omega_l = \frac{n_e e}{2\epsilon_0 B} \left(l - 1 + \left(\frac{R_p}{R_w}\right)^{2l} \right)$$

FLUID STRUCTURES IN NATURE AND IN LABORATORY



ROTATING ELECTRIC FIELD TECHNIQUE

$$\delta\phi(r = R_w, \theta, t) = \sum_{m=0}^{N_s - 1} V_m(t) [H(\theta - 2m\pi / N_s) - H(\theta - 2(m+1)\pi / N_s)]$$

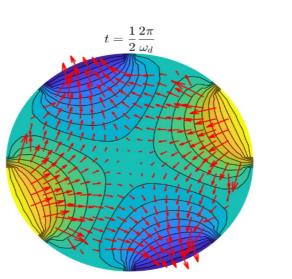
$$V_m = V_d \cos(\omega_d t + 2\pi\sigma mj / N_s)$$

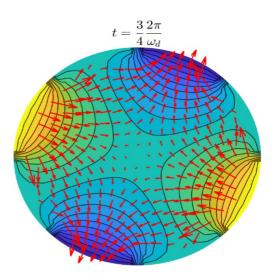
$$m = 0, \dots, N_s - 1$$

$$j = 1, \dots, N_s / 2$$

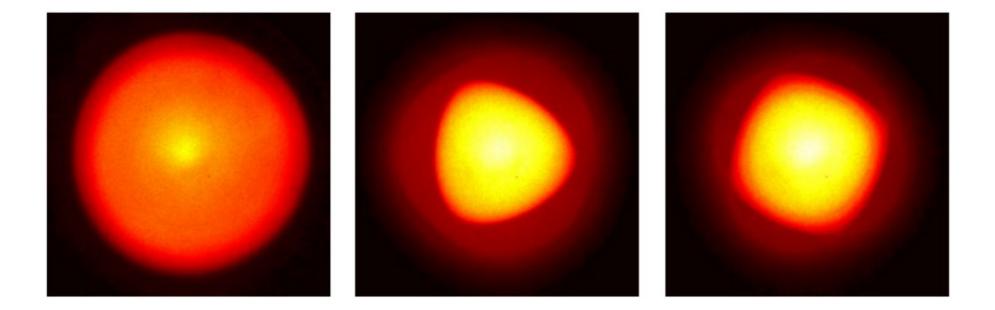
$$N_s = 8$$

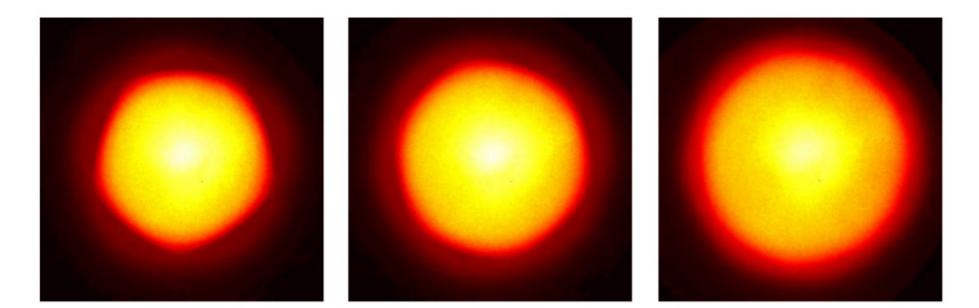
	excited modes		applied drive
j	σ=-1	σ=+1	
1	l=8k+1	l=8k+7	rotating dipole
2	l=8k+2	l=8k+6	rotating quadrupole
3	l=8k+3	l=8k+5	rotating sextupole
4	l=8k+4	l=8k+4	non-rotating octupole



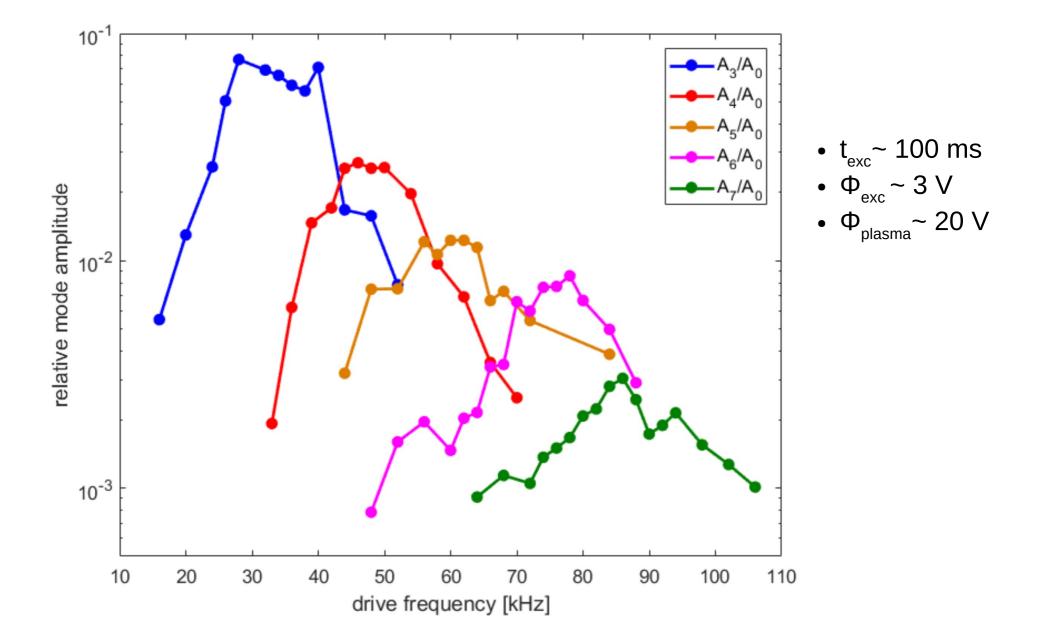


RESONANT DIOCOTRON MODE EXCITATION





RESONANT DIOCOTRON MODE EXCITATION



In this work, we show an experimental technique to control Kelvin-Helmholtz modes of arbitrary wavenumber by rotating electric fields in magnetized nonneutral plasmas. The results are in good agreement with theoretical predictions, proving this technique to be a useful tool in the study and control of fluid instabilities. In the future we are going to

1)Study the nonlinear relationship between wave frequency and amplitude.

- 2)Provide a more thorough characterization of the cascade decay of the modes and their damping.
- 3)Observe nonlinear dynamics of the wave growth and accurately control the amplitude via autoresonant excitation.