Measurement of quarkonium polarization in Pb-Pb collisions with ALICE at the LHC

Luca Micheletti (INFN Torino) on behalf of the ALICE collaboration

106° congresso nazionale Società italiana di fisica

14-18 September 2020

Quarkonium polarization: basic concepts

Polarization: • Defined as the **spin-alignment** with respect to a chosen direction

• Measured as **anisotropies** in the decay products angular distributions

 \bigcirc

Light quark

Heavy quark

Quarkonium polarization in pp and AA collisions

Polarization in pp collisions

Polarization in AA collisions

- Constrains J/ψ production mechanism
 No sizeable polarization measured at LHC
- At LHC energies a strongly-interacting medium (QGP) is produced in heavy-ion collisions
 - □ Presence of different mechanisms w.r.t. pp collisions
- Quarkonium suppression^[1]

 $c\overline{c}$ and $b\overline{b}$ bound states dissiociation in the QGP due to a color screening mechanism

□ Color screening affects differently the various states ($\psi(2S),\chi_c,\Upsilon(2S),...$) □ Change of prompt feed-down fractions → polarization modification

 J/ψ^{Prompt} : (30%)^[J/\psi \leftarrow \chi_c] and (10 - 15%)^[J/\psi \leftarrow \psi(2S)]

Quarkonium regeneration^[2]

Statistical **recombination** of the $c\overline{c}$ pairs in the medium (QGP)

Regeneration plays an important role at LHC energies
 Possible effect on the measured polarization

Outlook

Quarkonium polarization in Pb-Pb collisions is discissed in this presentation:

- J/ ψ polarization as a function of $p_{\rm T}$ from 2 to 10 GeV/*c* in 2.5 < y < 4
- $\Upsilon(1S)$ polarization for $p_{\rm T} < 15 \text{ GeV}/c$ in 2.5 < y < 4
 - \Rightarrow **Public result** (submitted to PLB)

"First measurement of quarkonium polarization in nuclear collisions at the LHC" <u>arXiv:2005.11128</u>

• J/ ψ polarization as a function of centrality for 2 < $p_{\rm T}$ < 6 GeV/c in 2.5 < y < 4

```
\Rightarrow Preliminary result
```

Data sample:

✓ 2015 and 2018 Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV ($L_{\rm int}$ ~ 0.75 nb^{-1})

• J/ ψ and $\Upsilon(1S)$ are studied in their dimon decay channel

	$J^{\rm PC}$	$m~({\rm GeV}/c^2)$	$B.R. (\rightarrow \mu^+ \mu^-)$
J/ψ	1	3.096	5.96%
$\Upsilon(1S)$	1	9.460	2.48%

A Large Ion Collider Experiment

The ALICE experiment at LHC is designed for the study of heavy-ion collisions

Central barrel :

 \Box QQ decay mode : e^+e^-

Muon spectrometer:

 \Box QQ decay mode : $\mu^+\mu^-$

Luca Micheletti

□ Rapidity coverage : 2.5 < y < 4

A Large Ion Collider Experiment

A Large Ion Collider Experiment

The ALICE experiment at LHC is designed for the study of heavy-ion collisions

Analysis procedure

Candidate selection

 J/ψ and $\Upsilon(1S)$ candidates are built combining muon pairs reconstructed in the muon spectrometer

 $\circ~$ Application of all the standard cuts for quarkonium analysis

Analysis steps

3. Polarization parameters extraction

Fit to the J/ $\psi A \times \varepsilon$ -corrected distribution with $W(\cos\theta, \phi)$

Signal extraction

J/ψ and Y(1S) yields extracted fitting the $\mu^+\mu^-$ invariant mass spectrum with a combination of signal and background functions

J/ ψ polarization vs $p_{\rm T}$

□ $p_{\rm T}^{{\rm J}/{\rm \Psi}}$ =2-4 , 4-6, 6-10 GeV/*c* □ 0-90% centrality

 J/ψ polarization vs centrality

□ 0-20%, 20-40%, 40-60% and 60-90% centralities □ $2 < p_T^{J/\Psi} < 6 \text{ GeV}/c$

Signal extraction

J/ψ and Y(1S) yields extracted fitting the $\mu^+\mu^-$ invariant mass spectrum with a combination of signal and background functions

J/ ψ polarization vs $p_{\rm T}$

□ $p_{\rm T}^{{\rm J}/{\rm \Psi}}$ =2-4 , 4-6, 6-10 GeV/*c* □ 0-90% centrality

J/ψ polarization vs centrality

□ 0-20%, 20-40%, 40-60% and 60-90% centralities □ $2 < p_T^{J/\Psi} < 6 \text{ GeV}/c$

Υ (1S) polarization vs $p_{\rm T}$

 $\square p_{\rm T}^{\rm Y(1S)} < 15 \text{ GeV}/c$ $\square 0-90\% \text{ centrality}$

SIF 2020

Data analysis

Extraction of the polarization parameters

SIF 2020

Quarkonium polarization results

J/ ψ polarization vs $p_{\rm T}$

- Polarization parameters as a function of p_T in the Helicity and Collins-Soper reference frames
 - λ_{θ} , λ_{ϕ} , $\lambda_{\theta\phi}$ close to zero in HE and CS
 - Solution Maximum deviation of $\sim 2\sigma$ in the low $p_{\rm T}$ bin
 - > Indication of small transverse/longitudinal polarization in $2 < p_T < 4 \text{ GeV}/c$ for HE/CS
- Comparison with **ALICE** results at $\sqrt{s} = 8$ TeV
 - $\Rightarrow \lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ compatible within the uncertainties
- Comparison with **LHCb** results at $\sqrt{s} = 7$ TeV
 - \implies Significant difference in $\lambda_{\theta}^{\mathrm{HE}}$ at low p_{T}

Quarkonium polarization results

J/ ψ polarization vs $p_{\rm T}$

- Polarization parameters as a function of p_T in the Helicity and Collins-Soper reference frames
 - $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ close to zero in HE and CS
 - Maximum deviation of $\sim 2\sigma$ in the low $p_{\rm T}$ bin
 - Indication of small transverse/longitudinal polarization in $2 < p_T < 4 \text{ GeV}/c$ for HE/CS

Υ (1S) polarization vs $p_{\rm T}$

- $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ compatible with zero in HE and CS
 - ➡ Significance limited by the available statistics

Quarkonium polarization results

New preliminary result!

J/ ψ polarization vs $p_{\rm T}$

- Polarization parameters as a function of $p_{\rm T}$ in the Helicity and Collins-Soper reference frames
 - $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ close to zero in HE and CS
 - Maximum deviation of $\sim 2\sigma$ in the low $p_{\rm T}$ bin
 - Indication of small transverse/longitudinal polarization in $2 < p_T < 4 \text{ GeV}/c$ for HE/CS

$\Upsilon(1S)$ polarization vs $p_{\rm T}$

- $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ compatible with zero in HE and CS
 - → Significance limited by the available statistics

J/ψ polarization vs centrality

- Flat trend for all the polarization parameters as a function of centrality
 - No visible dependence of λ_{θ} , λ_{ϕ} , $\lambda_{\theta\phi}$ moving from central to peripheral events

Luca Micheletti

Conclusions & future steps

"First measurement of quarkonium polarization in nuclear collisions at the LHC" arXiv:2005.11128

J/ ψ polarization vs $p_{\rm T}$

- $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ close to zero
- Indication of small transverse/longitudinal polarization in $2 < p_T < 4 \text{ GeV}/c$ for the Helicity/Collins-Soper reference frames (~ 2σ deviation from zero)
- Pb–Pb results compatible with **ALICE** pp measurement at $\sqrt{s} = 8$ TeV
- Comparison with pp results (LHCb) may indicate a significant difference at low $p_{\rm T}$

$\Upsilon(1S)$ polarization vs $p_{\rm T}$

 $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ compatible with zero in Helicity and Collins-Soper reference frames

J/ψ polarization vs centrality

No centrality dependence observed within uncertainties

FUTURE STEPS

Event-Plane dependence: effects related to the intense magnetic field produced in heavy ion collisions

106° congresso nazionale Società italiana di fisica

14-18 settembre 2020

Single muon cuts:

- *■* $-4 < \eta_{\mu} < -2.5$ to reject tracks at the edge of the spectrometer acceptance
- the matching of a track reconstructed in the tracking chambers with a track reconstructed in the trigger system with $p_{\rm T} > 1 \text{ GeV}/c$
- Radial transverse position at the end of the absorber in the range $17.6 < R_{abs} < 89.5$ cm to remove tracks passing through the inner and denser part of the absorber

Dimuon cuts:

Dimuon rapidity in the range 2.5 < $y_{\mu\mu} < 4$

Luca Micheletti

J/ψ polarization systematic uncertainties

Signal extraction

- Choice of various signal and background shapes for the fit to the invariant mass distributions
- Fix to the MC or keep free the J/ψ width in the signal extraction procedure

Trigger efficiency

 Use single muon trigger response function extracted from data or MC

Input MC distributions

Evaluation of the impact of different *p*_T, *y* MC input distributions on the polarization parameters

Centrality determination in ALICE

Evaluated in "J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV" ⁽¹⁾

1.) LHCb measured $J/\psi \leftarrow B$ in $2 < y < 4.5^{(2)}$

• $10 < f_B < 15\%$ in $2 < p_T < 10 \text{ GeV/c}$

2.) Non-prompt J/ ψ polarization measured by CDF in $p\bar{p}$ collisions⁽³⁾

- $\lambda_{\theta}(J/\psi \leftarrow B) \sim -0.1 \Rightarrow$ calculated w.r.t. the J/ψ direction in the LAB
- 3.) Assuming $|\lambda_{\theta}(J/\psi \leftarrow B)| \sim 0.2$ and f_B from LHCb

$$\implies \Delta \lambda_{\theta}^{\text{Max}} < 0.05$$

Smaller than the systematic uncertainties!

- (1) PRL 108 (2012) 082001
- (2) EUR. PHYS. J. C71 (2011) 1645
- (3) PRL 99 (2007) 132001

