

The COMPASS++/AMBER program for \bar{p} production cross-sections measurements

$\label{eq:autore: GIORDANO Davide} \\ \text{on behalf of COMPASS} + + / \text{AMBER collaboration} \\ \end{cases}$

Dipartimento di Fisica Università degli Studi di Torino

14-18 Sept, 2020

Davide GIORDANO (UNITO)

 $p + p/^4 He \rightarrow \bar{p} + X$ XS for DM search

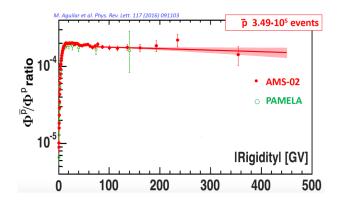
14-18 Sept, 2020 1/9

• The future collaboration COMPASS++/AMBER has proposed a " Measurement of proton-induced antiprotons production cross sections for dark matter searches".

- The future collaboration COMPASS++/AMBER has proposed a " Measurement of proton-induced antiprotons production cross sections for dark matter searches".
- **WIMP** hp: dark matter particle candidate, interacts with ordinary matter through weak-interaction

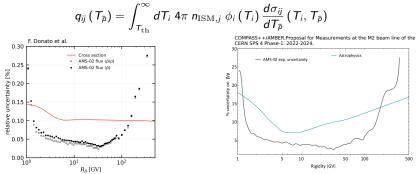
- The future collaboration COMPASS++/AMBER has proposed a " Measurement of proton-induced antiprotons production cross sections for dark matter searches".
- **WIMP** hp: dark matter particle candidate, interacts with ordinary matter through weak-interaction

 indirect detection of dark matter (DM) is based on the search for products of DM annihilation or decay → distortions in the spectra of rare cosmic ray components like positrons, antiprotons


- The future collaboration COMPASS++/AMBER has proposed a " Measurement of proton-induced antiprotons production cross sections for dark matter searches".
- **WIMP** hp: dark matter particle candidate, interacts with ordinary matter through weak-interaction

- indirect detection of dark matter (DM) is based on the search for products of DM annihilation or decay → distortions in the spectra of rare cosmic ray components like positrons, antiprotons
- necessity to distinguish signal from background: need of higher accuracy of the predicted natural flux (spallation of primary cosmic rays with interstellar medium)

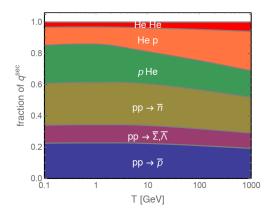
AMS-02 Data on \bar{p}/p



AMS-02 published high precision data (< 5%) on \bar{p} flux in 2016 over 1-500 GV range in rigidity.

Uncertainties on \bar{p} flux

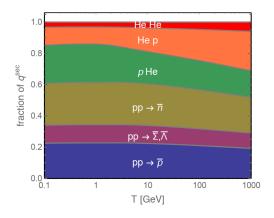
The proposed measure reflects the growing necessity of the astrophysical community for a more precise prediction on the \bar{p} natural flux .



Two major uncertainties limit the prediction of the \bar{p} flux from CR interaction with Interstellar Medium:

- production cross sections p-p $ightarrow ar{p} + X$ and p-He $ightarrow ar{p} + X$
- CR propagation in the galaxy

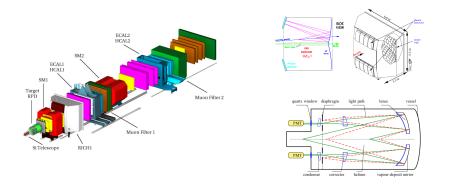
Various contributions



Nuclei heavier than proton and helium give a small contribution to the secondary production of cosmic rays.

The **dominant reactions are those involving protons and Helium** over the whole energy spectrum.

Various contributions


Nuclei heavier than proton and helium give a small contribution to the secondary production of cosmic rays.

The **dominant reactions are those involving protons and Helium** over the whole energy spectrum.

⇒ σ ($p + p \rightarrow \bar{p} + X$), done recently by NA-61, the future one extends source term covered ⇒ σ ($p + He \rightarrow \bar{p} + X$) no data available in AMS range (only LHCb at ~ TeV)

COMPASS @CERN

- using COMPASS setup for hadron physics (2009)
- Large-acceptance two-stage spectrometer
- \bullet Precise tracking (\sim 350 planes) and PID (CEDAR, RICH-1, calorimeters, muon system)

Davide GIORDANO (UNITO)

 $p + p/^4 He \rightarrow \bar{p} + X$ XS for DM search

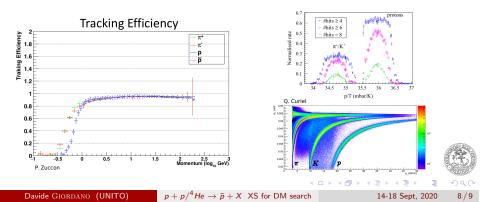
- $\bullet\,$ Secondary proton beam from SPS at different momenta: 50, 100, 190, 280 GeV/c
- Beam particle identification

- $\bullet\,$ Secondary proton beam from SPS at different momenta: 50, 100, 190, 280 GeV/c
- Beam particle identification
- Liquid Hydrogen target and Liquid He target

- $\bullet\,$ Secondary proton beam from SPS at different momenta: 50, 100, 190, 280 GeV/c
- Beam particle identification
- Liquid Hydrogen target and Liquid He target
- COMPASS RICH-1 detector to identify \bar{p} and reject π and K

- $\bullet\,$ Secondary proton beam from SPS at different momenta: 50, 100, 190, 280 GeV/c
- Beam particle identification
- Liquid Hydrogen target and Liquid He target
- COMPASS RICH-1 detector to identify \bar{p} and reject π and K
- Count all the inelastic p-p (or p-He) interaction in the target (N_{tot})

- $\bullet\,$ Secondary proton beam from SPS at different momenta: 50, 100, 190, 280 GeV/c
- Beam particle identification
- Liquid Hydrogen target and Liquid He target
- COMPASS RICH-1 detector to identify \bar{p} and reject π and K
- Count all the inelastic p-p (or p-He) interaction in the target (N_{tot})
- Identify events with one (or multiple) anti-p vs reconstructed momentum and angle (N_p(p, θ))


- $\bullet\,$ Secondary proton beam from SPS at different momenta: 50, 100, 190, 280 GeV/c
- Beam particle identification
- Liquid Hydrogen target and Liquid He target
- COMPASS RICH-1 detector to identify \bar{p} and reject π and K
- Count all the inelastic p-p (or p-He) interaction in the target (N_{tot})
- Identify events with one (or multiple) anti-p vs reconstructed momentum and angle (N_{p̄}(p, θ))
- Calculate the double differential cross section as

$$\frac{d\sigma_{\bar{p}}}{dpd\theta}(p,\theta) = \sigma_{pp} \frac{N_{\bar{p}}(p,\theta)}{N_{\text{tot}}} \frac{1}{\Delta p \Delta \theta}$$

Expected systematic uncertainty $\simeq 5$ % per data point and statistic error $\simeq 0.5$ %

Experimental requirements

- fast beam PID \rightarrow provided by 2 CEDARs
- precise tracking system (vertex resolution \leq 4 mm and hit spatial resolution 4-11 $\mu m)$
- PID system: a RICH detector for outgoing \bar{p} PID (over 90 % efficiency in 10-45 GeV/c range), calorimetry and muon walls
- new DAQ compatible with triggerless event read

- poor knowledge of p
 production cross sections influences dark matter signals sensitivity
- possible p-p and p-He cross section with \bar{p} production measurement @CERN with COMPASS++/AMBER spectrometer
- possibile schedule: pilot run in 2022, run in 2023

