

Misura delle sezioni d'urto di cattura neutronica ^{155,157}Gd(n,γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF

<u>A. Guglielmelli</u>, M. Mastromarco, C. Massimi, F. Rocchi, D.M. Castelluccio on benhalf of the n_TOF Collaboration

106° Congresso Nazionale Società Italiana di Fisica,14-18 settembre 2020

Scientific Motivation (Inconsistence of actual Gd data)

Deviation

from ENDF

+3.9%

Thermal

Xs (kb)

264

- The gadolinium odd isotopes σ(n,γ) thermal data present sensitive (-16 ÷ 4%) deviation once compared to the ENDF/B-VII.1 nominal values [1].
- ENDF/B-VII.1 data uncertainty (i.e., 0.3%) cannot be considered a safe estimation of the actual range values of the thermal Xs [1].

Tattersall	1960	213	-16%
Moller	1960	254	=
Groshev et al.	1962	240	-5.5%
Sun et. al	2003	232	-8.7%
Leinweber	2006	226	-11%
Mughabghab (ENDF/B-VII.1)	2006	254 ± 0.3%	=
Choi et al.	2014	239	-5.9%

Year

1958

Reference

Pattenden

- EXFOR database presents only one experimental thermal point of ¹⁵⁷Gd(n,γ) published in 1958 with no uncertainty associated to it.
- ^{155,157}Gd present relatively high uncertainty values (5÷10%) in thermal range.

[1] F. Rocchi, et al., EPJ Nuclear Science Technology 3, 21 (2017).

Misura delle Xs ^{155,157}Gd(n,γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF Congresso Nazionale di Fisica, 14-18 settembre 2020

Scientific Motivation (ICSBEP comparison and S&U analysis)

ICSBEP	Conf.	Kref	ENDF/B-VII	JEFF-3.1	Leinweber et al.[2]	Improv.
HST-014	C2 C3	1.0000 1.0000	1.00996 1.01827	1.01304 1.01852	1.01903 1.02636	No No
LCT-035	C3	1.0000	0.99591	0.99556	0.99935	Yes
LCT-005	C2 C3 C4 C6 C7 C8 C9	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.00029 0.99907 0.99721 1.00684 1.00191 1.00163 1.00257	1.00006 1.00002 0.99846 1.00697 1.00258 1.00295 1.00379	1.00466 1.01651 1.01602 1.00962 1.00846 1.01213 1.01459	No No No No No No

A **S&U analysis** showed that ^{155,157}**Gd(n,γ)** give the largest contribution to K_{eff} uncertainty after ^{235,238}U.

		TT													т			Т			11
															т			1			
			-		-			-	-	-	-		-	-	-	-		-			1
-	1400																				
				-	۰.									1	۰.				1		
					1																
+		1															Ξ				
										6											
								2													
	1								٩.										2	b.	
1							÷		÷			n.									
									17						1						
	R. 1								2					e.							
-							-										T				
1	144				1			C.		4			١.								
				10	Ζ.					71											
	-					10	1						ш						150		
							9				u		2		U)				£.,		
	-	1.5		-																	
								6													
									4		2						۳				
1					1																
				1	2									×.							
	TIME																				
		11			1				-					-							
1													1		T.						11
			1		1								1		1			-			

Parameter	Data							
FA; enr.	GE10x10-8; 4.12 wt%; HFP							
Nr. of Gd pins	14 (enr. 5.0 wt%)							
Boron content	0 ppm							
Water density	0.45 g/cc							
Xs MG library	V7-238 (ENDF/B-VII.0)							
Xs COV library	44group7.0 (ENDF/B-VII.0)							

- Analysis on a series of International Criticality Safety Benchmark confirmed the worsening of the latest Gd Xs data [2].
- The 74 LCT facilities yield average values of *C/E-1* between -578 pcm (JEFF-3.1.1) and -499 pcm (JENDL-4.0).
- The V. D. Marck works concludes that part of the *C/E-1* differences of overall 2000 ICSBEP is due to Gd isotopes [3].

	Covarian	ce matrix	Contribution to uncertainty	Rank (-)	
	Nuclide-	Nuclide-	Due to this	-	
	reaction	reaction	marix (%Δk/k)		
	²³⁵ Unubar	²³⁵ Unubar	2.62E-01	1.00	
	²³⁸ U(n,γ)	²³⁸ U(n,γ)	2.11E-01	0.80	
	²³⁸ U(n,n')	²³⁸ U(n,n')	1.66E-01	0.63	
	²³⁵ U(n,γ)	²³⁵ U(n,γ)	1.47E-01	0.56	
	²³⁵ U(n,f)	²³⁵ U(n,f)	1.41E-01	0.54	
	²³⁵ Uchi	²³⁵ Uchi	1.33E-01	0.51	
	²³⁵ U(n,f)	²³⁵ U(n,γ)	1.18E-01	0.45	
	²³⁸ Unubar	²³⁸ Unubar	8.35E-02	0.32	
	¹⁵⁷ Gd(n,γ)	¹⁵⁷ Gd(n,γ)	6.72E-02	0.26	
	¹⁵⁵ Gd(n,y)	¹⁵⁵ Gd(n,y)	5.15E-02	0.20	

[2] G. Leinweber et al., Nucl. Sci. Eng. 154, 03 (2006); [3] S. C. van der Marck, Nucl. Data Sheet 113, (2012).

Misura delle Xs 155,157 Gd(n, γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF

Congresso Nazionale di Fisica, 14-18 settembre 2020

Data Analysis (Capture yield and Counting rate)

• The Gd Xs were evaluated using the TOF technique through the measurement of the reaction yield:

$$Y(E_n)_x = N \frac{C_w(E_n) - B_w(E_n)}{\varepsilon_x \cdot \varphi_n(E_n)} \quad \blacksquare$$

C_w : Weighted $C_6 D_6$ counting rate

- **N**: normalized factor. C_w : weighted $C_6 D_6$ counting rate. B_w : weighted background counting rate. ε_x : detection efficiency $f(\Omega, A, f_{BIF}, \Phi)$ φ_n : neutron fluence.
- It was evaluated assuming the total-energy detection principle by means of Pulse Height Weight Technique (PHWT) that assure the proportionality between detection efficiency (DE) and y-ray energy:

$$\int_{0}^{\infty} R_{d}(E_{d}, E_{\gamma})WF(E_{d})dE_{d} = kE_{\gamma}$$

$$WF(E_{d}) = \sum_{i} (a_{i} \cdot E_{d,i})$$

$$X^{2} = \sum_{i} \left(kE_{\gamma j} - \int_{E_{l}}^{\infty} R_{d}(E_{d}, E_{\gamma j})WF(E_{d})dE_{d} \right)^{2}$$

$$C_{w}(T_{n}) = \int_{0}^{\infty} C(T_{n}, E_{d})WF(E_{d})dE_{d}$$

[6] J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

- WF definition: is a function defined to assure the proportionality between detection response (DR) and γ-ray energy.
- WF mathematical form: expressed with a smooth functions of the deposited energy and a set of free parameters.
- WF Parameters: were obtained by a least square fit of a number of y-ray response and minimizing the ${}^{2}X$.
- Cw: using the evaluated WF, a weighted TOF spectrum proportional to the y-ray energy was obtained.

Misura delle Xs ^{155,157}Gd(n,γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF Congresso Nazionale di Fisica, 14-18 settembre 2020

Data Analysis (Background, Normalisation factor and BIF)

- Dedicate measurements were performed in order to evaluate the various B_w component:
- Neutron beam interaction out the sample \rightarrow [*Empty Sample*] 1.
- 2. Sample-scattered neutrons $\rightarrow \left[\left({^{nat}Pb Empty} \right) \cdot R_n; R_n = Y_{Gd}^{sc} / Y_{Pb}^{sc} \right]$
- 3. y-ray traveling in the beam \rightarrow [Lead Sample]
- 4. Time-independent background \rightarrow [*Beam off*]

N: Normalized factor

- Groups together the correction factors independent of neutron energy.
- Obtained with saturated resonance technique applied to the 4.9 eV resonance in $(n + {}^{197}Au)$.
- *N* was extracted with an uncertainty due to counting statistic of less than 0.1%.

0.018 'su 10 7Gd Neighted Beam-of 10⁶ 107 108 TOF_m (ns)

BIF: Beam Interception factor

- The theorical capture yield for thick 155,157Gd sample is evaluated to be 1 below 0.07 and 0.1 eV ($n\sigma_{tot} \gg 1$).
- Any departure of the measured capture yield from unit can be ascribed to a variation in the BIF of the sample.
- An experimental BIF was evaluated to correct the capture yields of the thin gadolinium and gold samples.

Misura delle Xs ^{155,157}Gd(n,y) fra 10⁻² e 10⁶ eV alla facility sperimentale n TOF

Congresso Nazionale di Fisica. 14-18 settembre 2020

Data Analysis (*Resonance Shape Analysis* –¹⁵⁵Gd)

- **Code:** The RSA was performed with **SAMMY code**, using the Reich-Moore approximation. ENDF/B-VIII.0 resonance parameters (RP) and scattering radius (SR) were adopted as initial values of a fitting procedure.
- Features: The code includes corrections for experimental conditions such as: Doppler broadening, selfshielding and multiple scattering, thermal motion of atoms (free-gas model).

¹⁵⁵*Gd*

- ✓ Thermal point: is almost constant among libraries (60.735 ÷ 60.890 kb).
 A slightly higher Xs 62.2 ± 2.2 kb was deduced. We scott factor is 0.86.
- ✓ Resonance: kapture kernel of the 2.0 eV resonance is about 50% lower than the ENDF/B-VIII.0 value. Large deviations of 95.7 and 98.3 eV resonances were also founded with respect to JENDL-4.0.

Misura delle Xs ^{155,157}Gd(n,γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF Congresso Nazionale di Fisica. 14-18 settembre 2020

Data Analysis (*Resonance Shape Analysis* –¹⁵⁷Gd)

¹⁵⁷*Gd*

- ✓ Present thermal point: is similar among libraries (253.2 ÷ 254.5 kb). Leinwwber et al. [2] deduced a smaller value (-12%).
- ✓ N_TOF thermal point: was estimated a value of 239.8 ± 8.4 kb; this data settle between the two groups of evaluated values. WF is 0.89.
- ✓ Resonance: According to ENDF/B-VIII.0 with the exception of 139 eV value. Only one resonance was observed at 207.725 eV.

Kernel: *Ri* comparison reveals a average good agreement with ENDF/B-VIII.0 and JEFF-3.3 (Gaussian distribution, mean 0.98). On the contrary, JENDL-4.0 and [2] presents an average deviation of 13% (no Gaussian distribution).

Impact of new results

Comparison between n_TOF and ENDF data

- ✓ New ENDF files were obtained updating the existing ENDF/B-VII evaluation with the new n_TOF data.
- ✓ ENDF n_TOF-based file for 157Gd (n,γ) was obtained with the COMPLOT module of the PREPRO2017 code suite **[10]**.
- ✓ ENDF/B-VII.0 was estimated on average -3.5% in thermal range (0.01÷0.1 eV) and about +2.5% in epithermal range (0.1÷1 eV) [11].

- ✓ ZED-2 is a criticality thermal-spectrum facility for which the bias on reactivity was already investigated.
- MCNP showed that 157Gd(n,γ) are overestimated in ENDF/B-VII.0 (254 kb) and underestimated in ENDF/B-VII.1β (226 kb).
- ✓ The criticality gain to attain the experimental criticality factor is about +22 pcm. The calculated theorical gain^{*,**}is 6.1÷7.2 pcm higher [8].

 ${}^{*}\Delta k_{1} \approx k_{eff} \cdot S_{1} \cdot \Delta \sigma_{1} / \sigma \quad (1 \text{ group theory}) \implies \Delta k \approx +29.2 \text{ pcm}$ ${}^{**}\Delta k_{2} \approx k_{eff} \cdot S_{1} \cdot \Delta \sigma_{1} / \sigma + k_{eff} \cdot S_{2} \cdot \Delta \sigma_{2} / \sigma \quad (2 \text{ group theory}) \implies \Delta k \approx +28.1 \text{ pcm}$

 \checkmark n_TOF thermal point (239.8 kb) can be considered a better estimation.

[10] F. Rocchi *et al.*, Il nuovo Cimento 42 C (2019) 140.
[11] F. Rocchi *et al.*, Ann. of Nuc. Ene. 132 (2019) 537-543.

Misura delle Xs 155,157 Gd(n, γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF

Congresso Nazionale di Fisica, 14-18 settembre 2020

Impact on a criticality thermal facility – ZED2

Conclusions

- ^{155,157}Gd(n,γ) despite their reactor safety-related importance, also stated by OECD/NEA that includes this isotopes in the High Priority Request List (HPRL), are presently know with an accuracy not full adequate to the nuclear industry purpose.
- In 2016 new measurements have been performed at EAR1 hall of CERN n_TOF facility that has allow to obtain new experimental data with an uncertainty between 3.2 and 3.5%.
- The data analysis of the n_TOF results revealed some remarkable difference compared to the existing evaluated data in terms of resonance structure and kernel. ¹⁵⁷Gd thermal point value was found between ENDF/B-VII.0 and ENDF/B-VII.1 evaluations.
- A comparison between ENDF n_TOF related and existing ENDF data has revealed an average discrepancy between -3.5% and +2.5% in the 0.01 ÷ 10 eV energy range.
- A preliminary validation of the n_TOF ¹⁵⁷Gd data on a criticality thermal facility (ZED-2) showed that the new data can be considered a better estimation compared to the old ones.
- New measurements are currently underway at JRC GELINA facility to try to further reduce the thermal data uncertainty. In the future, other ICSBEP benchmarks will be used for additional validation of the new n_TOF data.

Misura delle Xs 155,157 Gd(n, γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF Congresso Nazionale di Fisica, 14-18 settembre 2020

Grazie per l'attenzione!

Antonio Guglielmelli antonio.guglielmelli@enea.it

Misura delle Xs ^{155,157}Gd(n,γ) fra 10⁻² e 10⁶ eV alla facility sperimentale n_TOF Congresso Nazionale di Fisica, 14-18 settembre 2020