Fisica dei decadimenti charmless del mesone Ba Belle II

Sebastiano Raiz INFNEOU notarsite di Trieste Gerla collaborazione Belle II

106° Congresso Nazionale SIF 14-18 settembre 2020

Decadimenti *charmless* del *B* per superare il Modello Standard

Modello Standard (MS): solo 20 parametri offrono predizioni precisissime su migliaia di processi di fisica delle particelle dall'eV al TeV.

Domande aperte: - Materia oscura

- Asimmetria materia-antimateria

Estensione del MS a > 10 TeV è obbiettivo primario della fisica delle particelle.

Interazioni deboli dei quark pesanti: potentissime per testare MS e sue estensioni.

Confronto tra misure e predizioni ad *alta precisione* sensibile a particelle non-MS fino a O(100 TeV).

Decadimenti charmless del B

 $(B^0 \rightarrow K^+ \pi^-, B^+ \rightarrow \rho^+ \rho^0 ...)$

 $|V_{ub}| < |V_{cb}| \implies \text{Rari: BF} \le 10^{-5}$

⇒ Sensibili a fisica non-MS attraverso misure di α , β , e violazione di CP diretta

Ulteriori sfide:

- ⇒ stati finali indistinguibili dai fondi più comuni;
- \Rightarrow predizioni complicate da QCD non perturbativa.

Mesone *B*: contiene quark *b*, partner massivo ed a vita media lunga del quark *d* che forma la materia nucleare.

Decadimenti charmless a Belle II

SuperKEKB: \approx 1000 coppie $B\bar{B}$ al secondo in collisioni e^+e^- a 10 GeV.

- > 50 miliardi di $Bar{B}$ (40x campione attuale) in 10 anni
- Produzione in soglia ad energia nota
- Evoluzione coerente di $B^0ar{B}^0$
- ⇒ Basso fondo e condizioni uniche per stati finali con γ , π^0 , ν .

SuperKEKB e Belle II oggi:

- \checkmark Record di luminosità e^+e^- : 2.4×10³⁴cm⁻²s⁻¹;
- ${\bf v}$ raccolte ~80M coppie $B\bar{B}$;

Belle II ha ruolo chiave nei charmless perché accede a tutti gli stati finali (carichi, neutri) in maniera unificata e consistente.

Oggi: prima misura a Belle II di rapporti di ramificazione e asimmetrie CP nei *B* charmless.

Fase iniziale dell'esperimento: usare fisica nota come referenza per validare il detector.

Panorama dell'analisi

Misure di $\mathscr{B} \in \mathscr{A}_{CP}$ di $B^0 \to K^+ \pi^-, B^0 \to \pi^+ \pi^-, B^+ \to K^+ \pi^0, B^+ \to \pi^+ \pi^0, B^+ \to K^0_S \pi^+, B^0 \to K^0_S \pi^0, B^+ \to K^+ \pi^- \pi^+ \in B^+ \to K^+ K^- K^+.$

Selezione

Dati: 38M di coppie $B\bar{B}$ raccolti tra 2019 e 2020.

Sfida: escludere il fondo dominato da coppie di quark leggeri (continuum).

Combino 40 variabili sensibili a differenze topologiche, cinematiche, dinamiche in un discriminante non lineare che massimizza $S/\sqrt{S+B}$.

Ottimizzo selezione usando dati simulati e canali di controllo.

Efficienza di selezione CS: 35 - 79% Soppressione del fondo $q\bar{q}$: 96 - 99%

Due corpi: $B^0 \to K^+\pi^-$, $B^0 \to \pi^+\pi^-$

Due tracce: validazione tracciatura e identificazione adroni carichi.

Due corpi: $B^+ \to K^+ \pi^0$, $B^+ \to \pi^+ \pi^0$

Validazione ricostruzione π^0 .

Due corpi: $B^+ \to K^0 \pi^+$, $B^0 \to K^0 \pi^0$

Validare ricostruzione K_S^0 .

Tre corpi: $B^+ \rightarrow K^+ \pi^- \pi^+$, $B^+ \rightarrow K^+ K^- K^+$

Validazione gestione peaking backgrounds.

Violazione diretta della simmetria carica-parità

Misuro asimmetrie di carica.

Sommario

La fisica del sapore è fondamentale nella ricerca di estensioni del Modello Standard.

Decadimenti charmless del *B* hanno ruolo essenziale. Belle II è esperimento ideale per studiarli in condizioni di basso fondo.

Oggi: prime misure di BF e asimmetrie CP di decadimenti charmless in Belle II. https://indico.cern.ch/event/868940/contributions/ 3815672/

Risultati in accordo con i valori noti, e prestazioni confrontabili con le migliori di Belle ⇒ Buona comprensione del detector e degli strumenti utilizzati.

Belle II pronto a fare la sua parte nella ricerca di fisica non-MS.