Study of charmless decay $B \to \eta' K$ at Belle II

Valeria Fioroni on behalf of the Belle II Collaboration

Università degli studi di Padova Dipatrimento di Fisica e Astronomia "Galileo Galilei"

> 106° Congresso Nazionale Società Italiana di Fisica

> > 14-18 Settembre 2020

Università degli Studi di Padova

For further details see Giacomo De Pietro's talk "Stato dell'esperimento Belle II e primi risultati di fisica" (16 September 2020) e^+e^- Flavour Factory

Target luminosity $60 \times 10^{34} \ cm^{-2} \ s^{-1}$ (30 times higher than KEKB record)

Belle II Detector \longrightarrow

Designed to deal with higher background, higher event rates and reduced CM boost wrt Belle ($\beta\gamma=0.28$)

Physics program:

Main goal: new physics searches and precision measurements (e.g CKM matrix) in the flavour sector

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} = \begin{bmatrix} 1 - \frac{1}{2}\lambda & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

$$\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$$

Successful rediscovery of η and $\eta',$ in the channels:

- $\eta' \to \eta \pi^+ \pi^- \ (\eta \to \gamma \gamma)$
- $\eta' \rightarrow \eta \pi^+ \pi^- \ (\eta \rightarrow \pi^+ \pi^- \pi^0)$

•
$$\eta' \to \rho(\pi^+\pi^-)\gamma$$

Channel with $\eta \to \pi^+\pi^-\pi^0$ has a lower efficiency than

the one with $\eta \to \gamma \gamma$ ($\epsilon(3\pi/2\gamma) \sim 0.46$) so it is not included in the following study.

Stefano Lacaprara, *Rediscovery of* η *and* η' *mesons in* early phase 3 Belle II data, BELLE2-NOTE-PL-2020-003

2 / 10

Why $B \rightarrow \eta' K$?

 Charmless B decays potentially sensitive to new CP-violating phases from physics beyond the SM

Mode	Decay channel	Branching fraction	
	inclusive	7.06×10^{-5}	-
$B^+ \to \eta' K^+$	$\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$	1.19×10^{-5}	
	$\eta' \to \rho(\pi^+\pi^-)\gamma$	2.04×10^{-5}	Only $K_s^0 \to \pi^+\pi^-$ final state - is considered for the neutral mode
	total	3.23×10^{-5}	
	inclusive	6.6×10^{-5}	
$B^0 \to \eta' K$	$\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$	5.54×10^{-6}	mode.
	$\eta' \to \rho(\pi^+\pi^-)\gamma$	9.54×10^{-6}	
	total	1.51×10^{-5}	

Decay channels and Branching Fractions

Analysis yet to be approved

Study performed on MC samples and data in the side bands (outside the signal region)

Dataset:

Data: $\int Ldt = 34.6 \text{ fb}^{-1}$ MC simulations:

- Continuum background ($q\bar{q}$ pairs and τ pairs): equivalent $\int Ldt = 0.5 \text{ ab}^{-1}$
- Peaking background ($B\bar{B}$): equivalent $\int Ldt = 1 \text{ ab}^{-1}$
- Signal: equivalent $\int L dt = 9 72 \text{ ab}^{-1}$, depending on the considered final state

SxF (Signal crossfeed):

SxF candidates are misreconstructed signal candidates. Misreconstructed particles for $B^0 \rightarrow \eta'(\eta(\gamma\gamma)\pi^+\pi^-)K_s$:

Reconstruction and selection efficiencies

Selection efficiency on signal and SxF samples for each signal selection variable.

SxF drops significantly after signal selection

	$B^{\pm} \rightarrow \eta' K^{\pm}$		$B^0 \to \eta' K_s^0$	
	$\eta' ightarrow \eta \pi^+ \pi^-$			
	$\epsilon\%$	SxF %	$\epsilon\%$	SxF %
Reconstruction	40.2 ± 0.11	7.1 ± 0.06	39.6 ± 0.11	8.6 ± 0.06
Selection	31.7 ± 0.10	2.4 ± 0.03	31.3 ± 0.10	2.8 ± 0.04
	$B^{\pm} \rightarrow \eta' K^{\pm}$		$B^0 \to \eta' K_s^0$	
		η' –	$\rightarrow \rho \gamma$	
	$\epsilon\%$	SxF %	$\epsilon\%$	SxF %
Reconstruction	31.1 ± 0.10	9.8 ± 0.07	30.5 ± 0.10	11.2 ± 0.07
Selection	24.8 ± 0.10	1.7 ± 0.03	25.2 ± 0.10	27 ± 0.04

<ロト < 回 > < 三 > < 三 > ・ 三 ・ の < ()

5 / 10

Continuum suppression

- · Selection on highly discriminating variables that depend on event shape
- Continuum suppression efficiency for signal $\sim 60\%$.

Fit variables:

- $M_{bc} = \sqrt{E_{beam}^2 P_B^2}$
- $\Delta E = E_B E_{beam}$
- $M_{\eta'}$

Signal region (SR) and side band (SB)

SR: $M_{bc} > 5.27 \text{ GeV/c}^2$ and $-0.07 < \Delta E < 0.05 \text{ GeV}$

SB: complementary region up to $M_{bc} > 5.2 \text{ GeV/c}^2$ and $|\Delta E| < 0.200 \text{ GeV}$

Good agreement between MC and data outside the signal region

つへで 7 / 10

イロト イヨト イヨト

Fit procedure

Unbinned Maximum Likelihood fit of M_{bc} , ΔE and $M_{\eta'}$

Fit procedure tested with toy MC samples generated using pdfs for background and sampling signal from large signal dataset.

The fit is stable. No significant bias has been found.

Fit results

Results on simulated datasets built from MC using as input the expected number of events in each category (backgrounds,S×F, signal).

Signal enriched region for $M_{bc}, \Delta E, M_{\eta'}$, with a cut on signal-over-background likelihood ratio of 0.7.

The 2d plots of M_{bc} and ΔE are shown for all events

クへで 9 / 10

CONCLUSIONS AND OUTLOOK

- Charmless B decays potentially sensitive to the presence of new CP-violating phases
- Promising analysis on charmless $B \rightarrow \eta' K$ decay
 - successful signal extraction on MC
 - ▶ good agreement between MC and data outside the signal region

イロト イボト イヨト イヨト

10 / 10

Outlook:

- Signal extraction on Belle II data
- Extend to Time Dependent CP Violation measurement