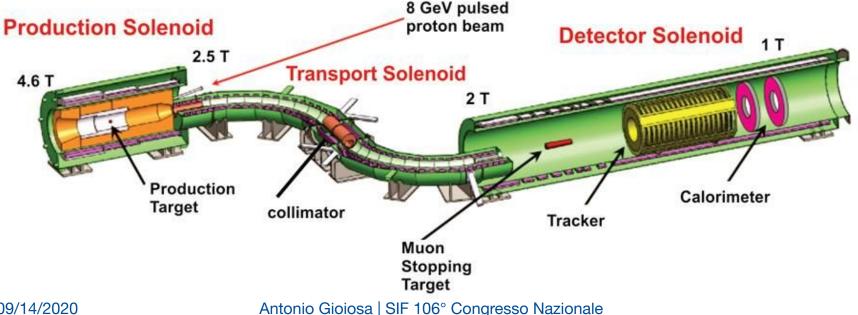


INFN

Mu2e

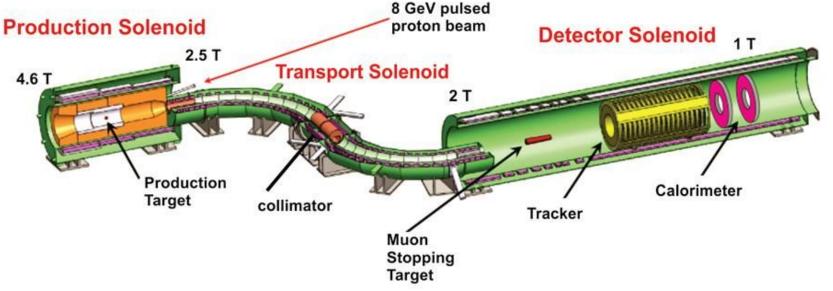
Mu2e Online DAQ and Slow Control interface

Antonio Gioiosa Università di Pisa, INFN Pisa


SIF 106° Congresso Nazionale September 14, 2020

The Mu2e Experiment at Fermilab

Mu2e is an experiment under construction at Fermilab to measure the charged-lepton flavour violating neutrinoless conversion of a negative muon into an electron in the field of an aluminum nucleus


With the expected experimental sensitivity, Mu2e will improve the SINDRUM II limit (7.0 · 10⁻¹³) of four orders of magnitude

(assuming we will run for three years, with $3.6 \cdot 10^{20}$ protons, with a run time of $6.0 \cdot 10^7$ s, requiring a background under 1 event)

The Mu2e Experiment at Fermilab

The signal we are looking for is a delayed monoenergetic electron with an energy of just under 105 MeV (muon mass)

- A pulsed proton beam (from Fermilab's accelerator complex) hits the production target to produce pions which decay into muons
- The muons get transported via the transport solenoid to the detector solenoid where they get stopped at the aluminum stopping target
- If conversion electrons are produced in the stopping target, they will move through the tracker and calorimeter where they can be measured

3 09/14/2020

Mu2e Online DAQ and Slow Control interface

Summary:

- Online DAQ (otsdaq) overview
- Slow Controls connection and EPICS plugin development in otsdaq
- Slow Controls Monitoring in otsdaq
 - Monitoring and Slow Controls GUI
- Slow Controls Alarm alerts and messages
- Slow Controls Integration with otsdaq State Machine and Alarm handling
 - Integration of *otsdaq* front-end DAQ hardware Process
 Variables (PVs) with EPICS (*DTC/ROCs/CFO*)
 - Integration of online data processing output metrics with EPICS
- Conclusion
- 4 09/14/2020

Mu2e Online DAQ solution: otsdaq

otsdaq overview

- otsdaq is a Ready-to-Use data-acquisition (DAQ) solution aimed at test-beam, detector development, and other rapid-deployment scenarios
- it uses the *artdaq* DAQ framework under-the-hood, providing flexibility and scalability to meet evolving DAQ needs
- **otsdaq** provides a library of supported front-end boards and firmware modules which implement a custom UDP protocol
- An integrated Run Control GUI and readout software are provided, preconfigured to communicate with **otsdaq** firmware

otsdaq overview

More info at otsdaq web page https://otsdaq.fnal.gov/

otsdaq

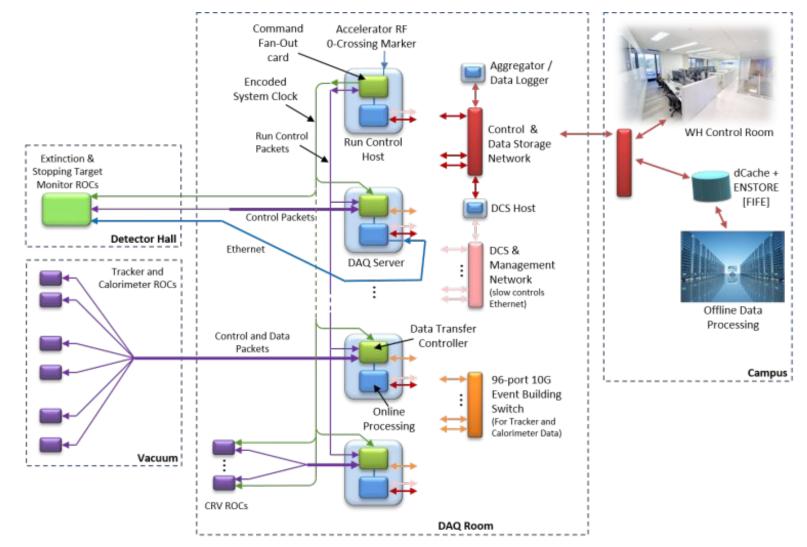
Project Homepage

Source Code Documentation

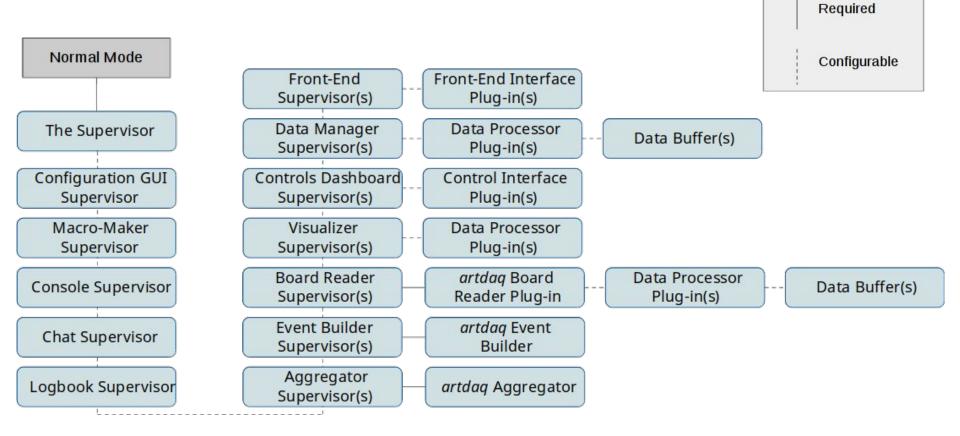
User Manual

Tutorials (User/Expert Training)

"First Demo" tutorial

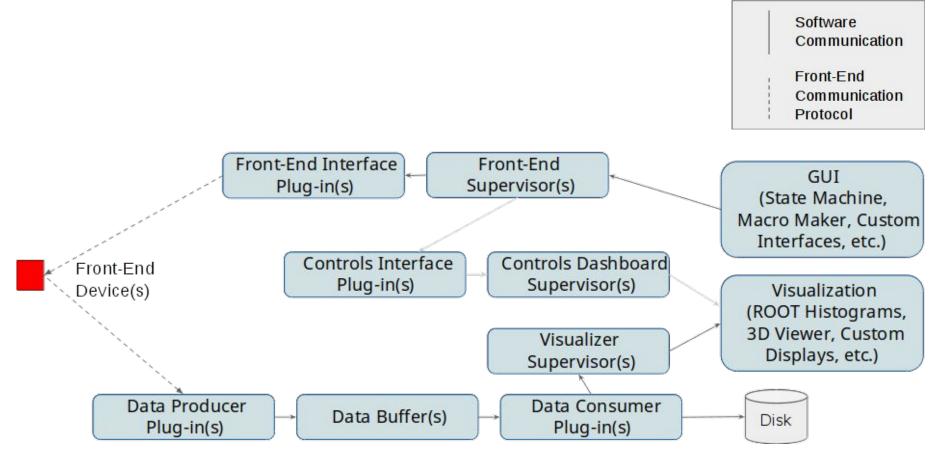

otsdaq is a Ready-to-Use data-acquisition (DAQ) solution aimed at test-beam, detector development, and other rapid-deployment scenarios. otsdaq uses the artdaq DAQ framework under-the-hood, providing flexibility and scalability to meet evolving DAQ needs. otsdaq provides a library of supported front-end boards and firmware modules which implement a custom UDP protocol. Additionally, an integrated Run Control GUI and readout software are provided, preconfigured to communicate with otsdaq firmware.

Last modified: 04/29/20 email Fermilab


otsdaq overview

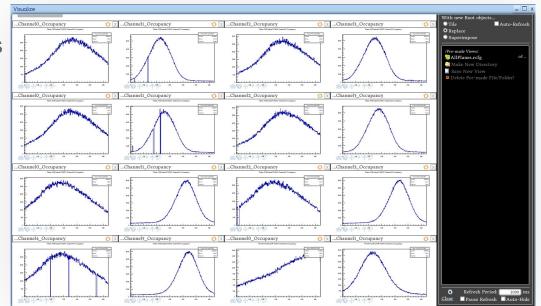
Mu2e TDAQ components Diagram

Components


otsdaq overview

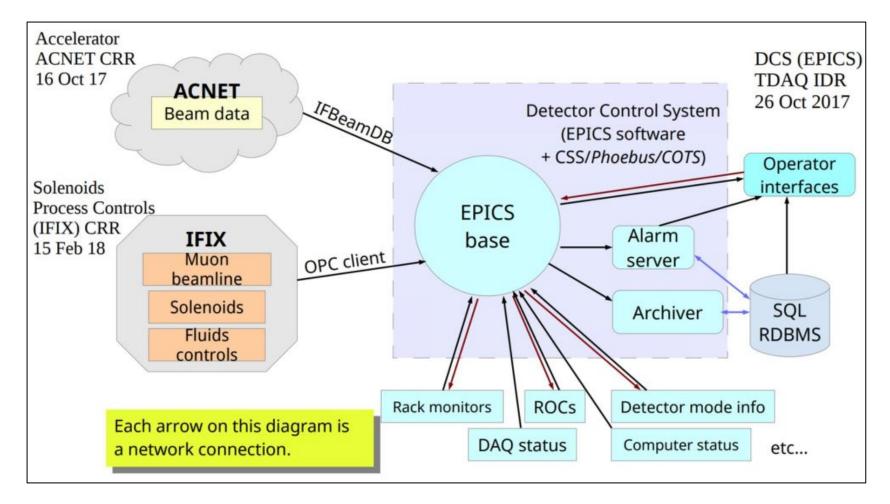
otsdaq overview

Data Flow Block Diagram



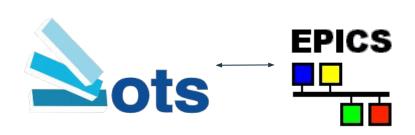
otsdaq overview

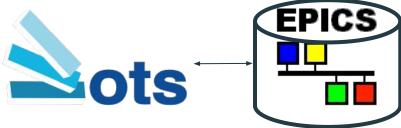
Data processing: Page example


- Data processing is the primary responsibility of the online DAQ. Mu2e's event window data will be processed through artdaq modules
- Data processor plugins is provided by otsdaq core
- DQM metrics are distinct from event rate and data flow metrics (which artdaq provides)
- DQM generates data products that are sent to an artdaq Dispatcher, which aggregates DQM metrics and presents them to a visualizer application

Slow Controls connection and EPICS plugin development in otsdaq

Experimental Physics and Industrial Control System

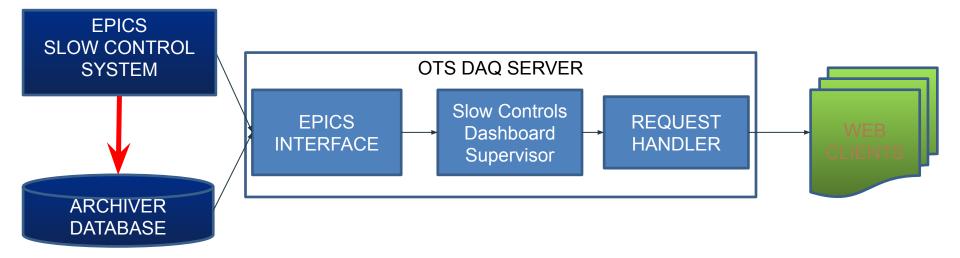



Slow Controls connection and **EPICS** plugin development in otsdaq

Channel subscription to EPICS

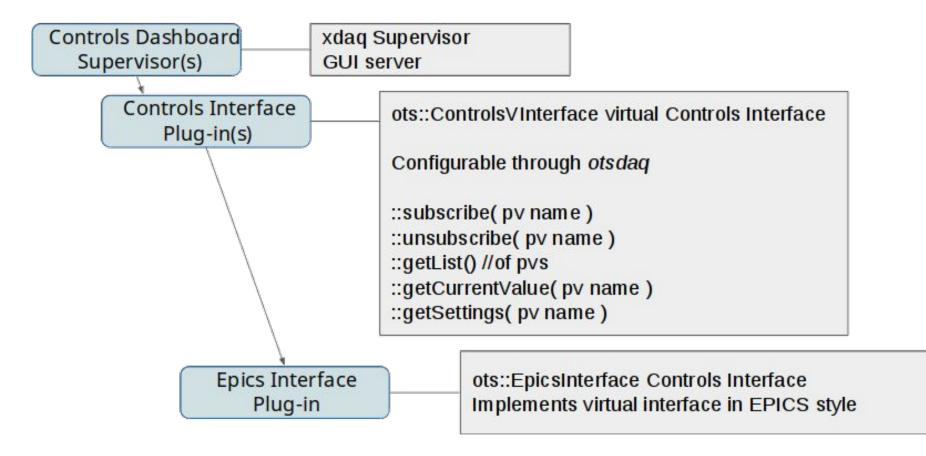
- Value
- Alarm (Status, Severity)
- Settings

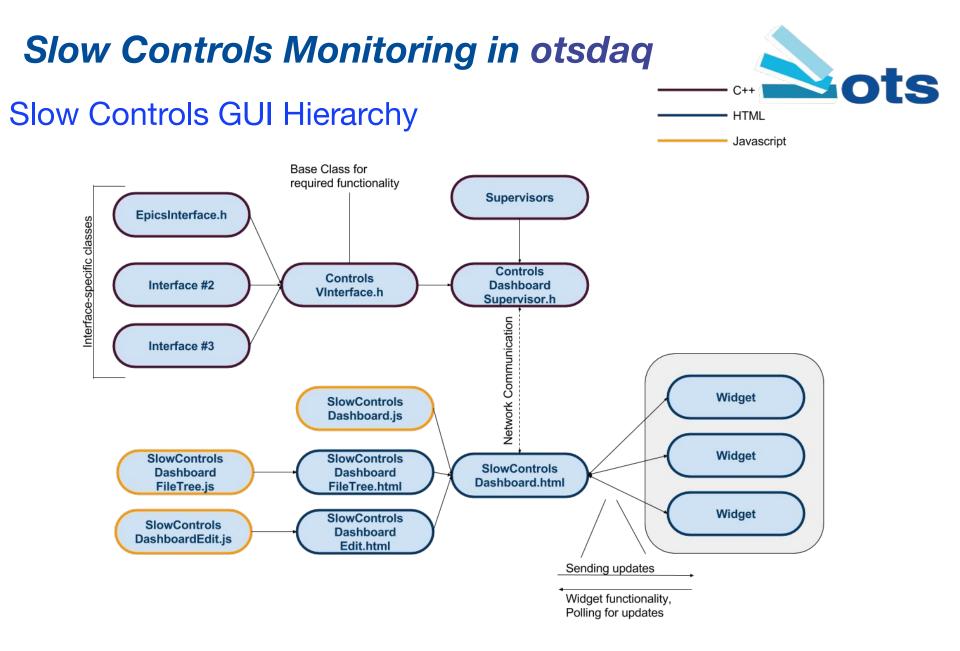
- PV Unit, Lower and Upper Warning Limits, Lower and Upper Alarm Limit, Lower and Upper Control Limits, Lower and Upper Display Limits
- Channel history and alarms retrieving from EPICS Archiver
 Databases
 - dcs_archiver
 - dcs_alarm
 - dcs_log

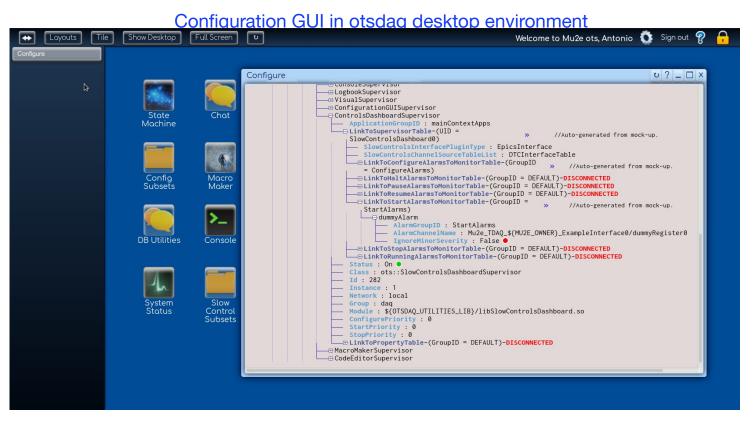

Slow Controls Software purpose

 Allow the user to monitor or interact with their own DAQ hardware. Able to see things such as:

Alarms, Warnings, Readouts, Timestamps, Status


• Interact through a web interface that is:

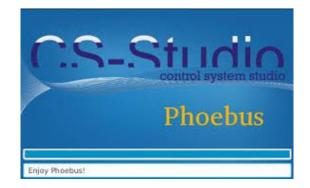

Lightweight, User-Friendly, Plug n' Play, Customizable

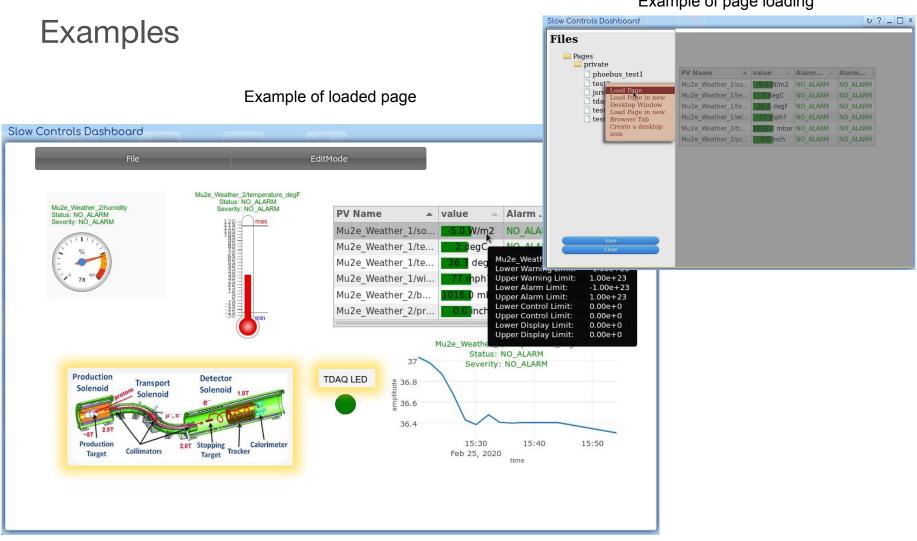

Slow Controls C++ Hierarchy

Configuring by specific tables in otsdaq

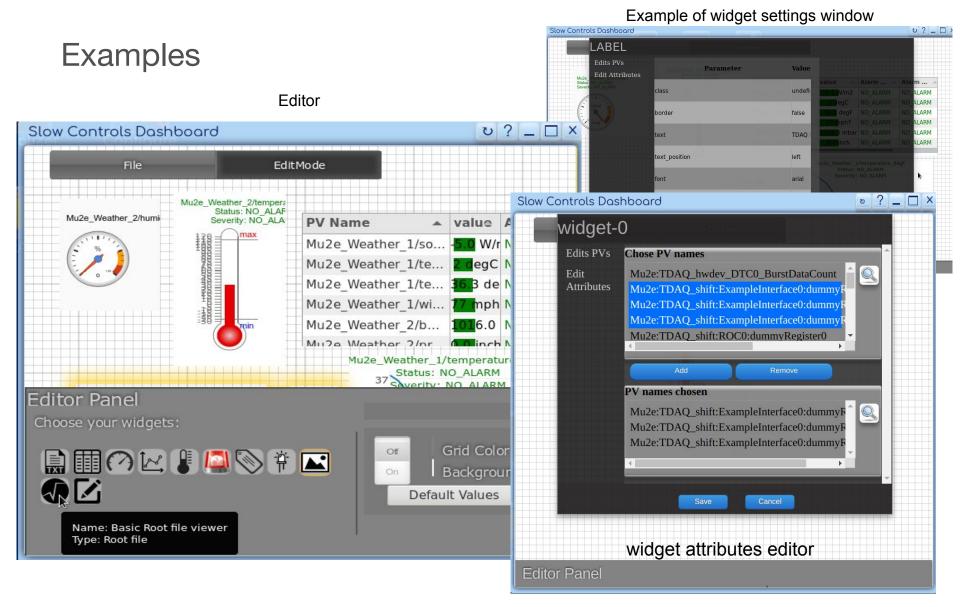
DesktopIconTable, XDAQApplicationPropertyTable, XDAQApplicationTable, XDAQContextTable

Basic Widget Mechanics

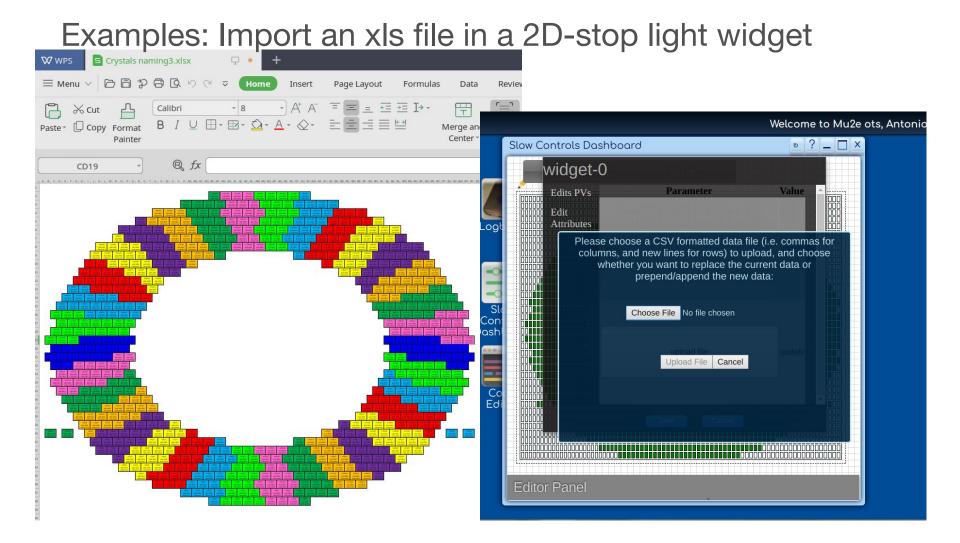

• All widgets have six required methods:


init(), getParameters(), setParameters(), setupPVs(), newWidget(), and newValue() (see also Control System overview Mu2e Document 9082-v1)

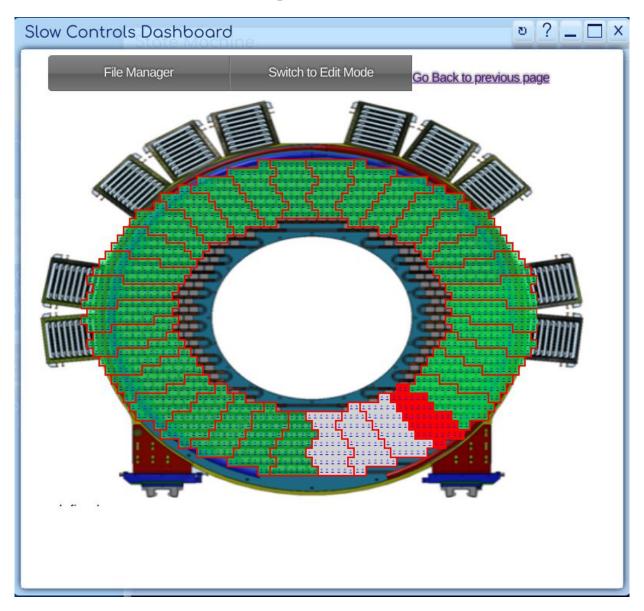
Widget properties


- Dynamic sizing
- Proper handling of setups
- Value error, warning and alarm handling
- Disconnection handling

Load and save dashborad page in XML Cs-Studio Phoebus compatible format

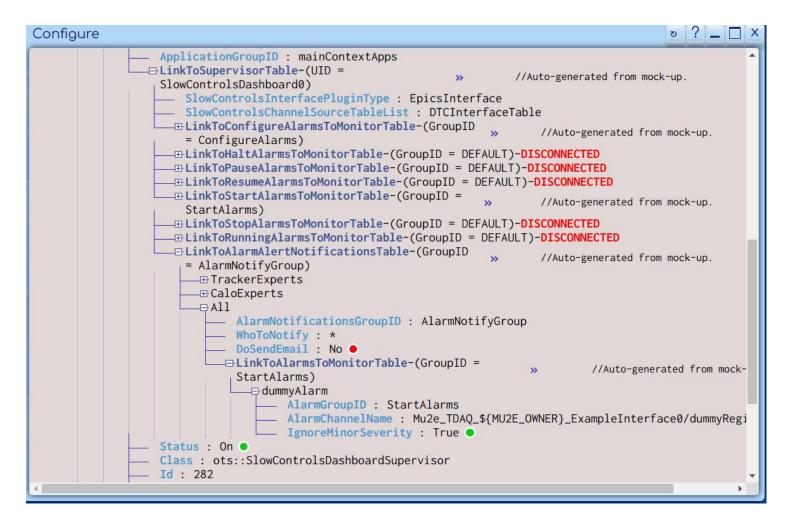


Example of page loading

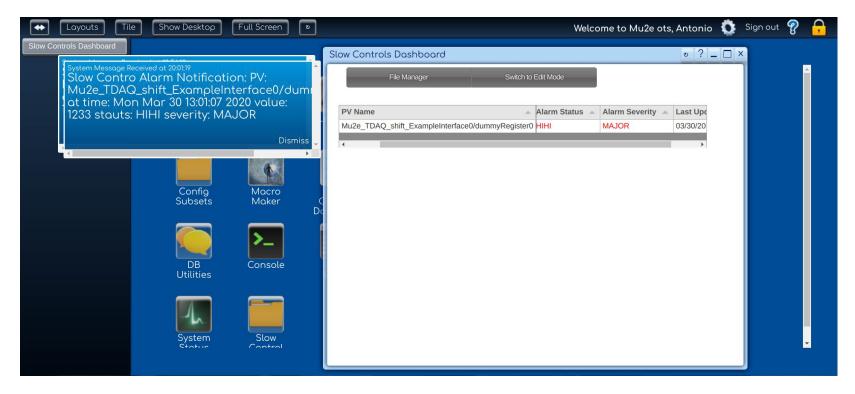


19 09/14/2020

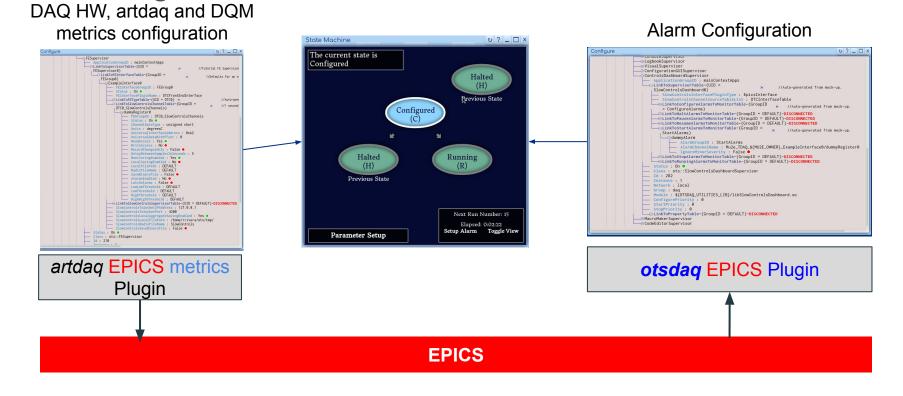
Calorimeter monitoring and the Slow Controls GUI



Calorimeter monitoring and the Slow Controls GUI

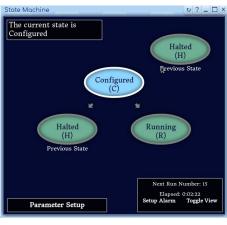

Slow Controls alarm notification by System Message

Configured by specific table in otsdaq:

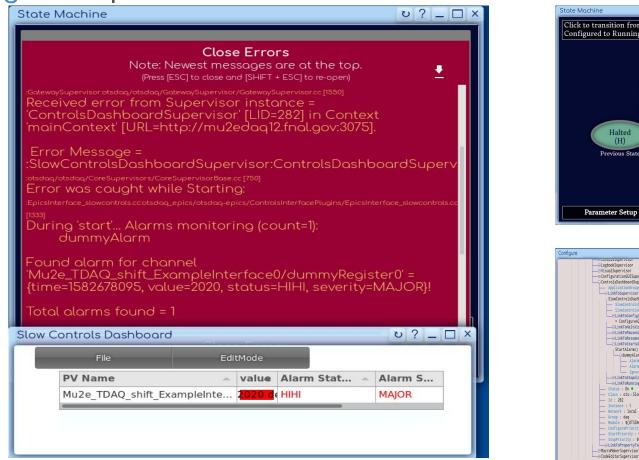


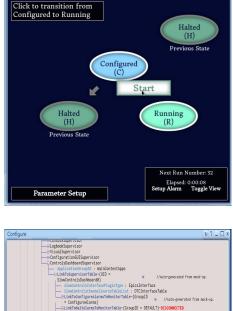
Slow Controls alarm notification by System Message

System message alarm notification example



- State Machine Configuration and data subscription to EPICS
- Alarm propagation (from EPICS) and otsdaq State Machine handling


- Alarm propagation (from EPICS) and otsdaq state machine handling is available: needs just to identify which PV alarms, status and severity will be propagated
- Tables and parameters designed for configuration
 - SupervisorTable parameters:
 - Slow Controls Interface Plugin Type
 - Slow Controls Channel Source Table List (HW list i.e. DTC Interface, CFO Interface)
 - Alarms To Monitor Tables for transition to states:
 - Configure
 - Halt
 - Pause
 - Resume
 - Start


25 09/14/2020• Running

Alarm propagation (from EPICS) and otsdag state machine handling: Example on "Start" transition

-@LinkToPauseAlarmsToMonitorTable-(GroupID = DEFAULT)-DISCONNECTED -@LinkToResumeAlarmsToMonitorTable-(GroupID = DEFAULT)-DISCONNECTED -@LinkToRstartAlarmsToMonitorTable-(GroupID =) //Auto-generated from mock-up.

AlamcKnamelNam: NU2_TOW_S(V/ZE_ONNER)_ExampleInterface0/dumyRegister0
 AlamcKnamelNam: NU2_TOW_S(V/ZE_ONNER)_ExampleInterface0/dumyRegister0
 AlamcKnamelNam: NU2_TOW_S(V/ZE_ONNER)_ExampleInterface0/dumyRegister0
 DEFAULT)-DISCONNECTED

----LinkToRunningAlarmsToMonitorTable-(GroupID = DEFAULT)-DISCONNECTED

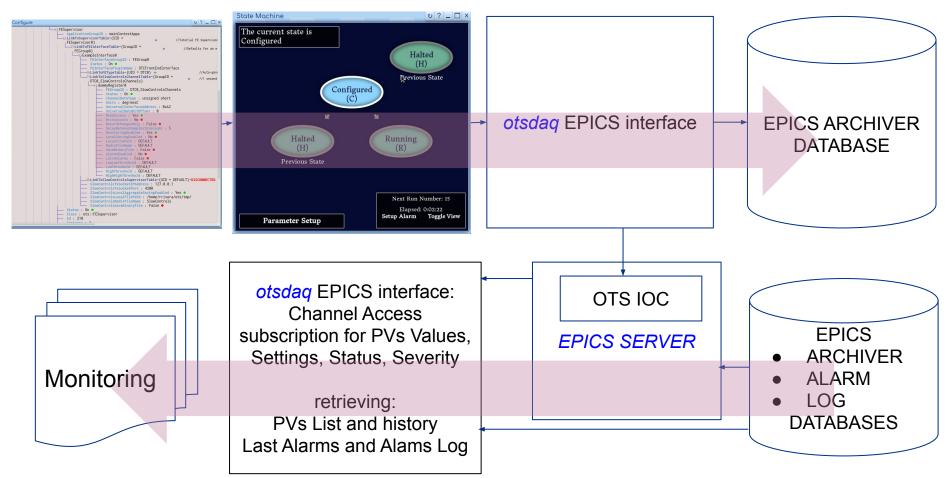
Group : daq Module : \${OTSDAQ_UTILITIES_LIB}/libSlowControlsDashboard.so ElinkToPropertyTable-(GroupID = DEFAULT)-DISCONNECTED

s : ots::SlowControlsDashboardSumervisor

StartAlarms) -ƏdunnyAların

atus : On 🖲

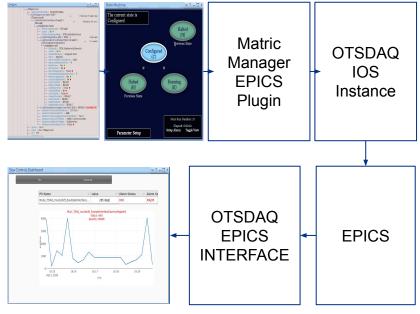
Id : 282 - Instance : 1 - Network : local v?_□


Integration of otsdaq front-end DAQ hardware and artdaq metrics with EPICS

Actions designed and developed in otsdaq

- 1. otsdaq DCS channels Front End and tables configuration
- 2. otsdaq State Machine configuration implementation
- 3. add/update channels info for IOC and Archiver DB
- 4. software IOC restarting
- 5. EPICS Archiver restarting
- 6. new otsdaq epics_plugin channels subscriptions to EPICS
- 7. Sending configured channels values to EPICS: $otsdaq DCS channels new values \rightarrow artdaq Metric Manager$ $\rightarrow software IOC \rightarrow EPICS \rightarrow otsdaq DCS GUI$

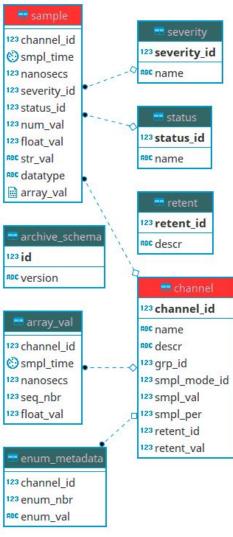
27 09/14/2020


- otsdaq FE (DTC/ROC/CFO) / artdaq metric new channel or new slow control setting → configuring State Machine → EPICS DBs and IOC configuration
- otsdaq Interface \rightarrow otsdaq CA subscription and DBs select \rightarrow Monitoring

28 09/14/2020

Online data processing output metrics and EPICS

- artdaq tracks a large number of ۲ metrics about event rate and dataflow, which can be enabled at the metric plugin level
- the user can send a subset of metrics to EPICS


Units Mode(s) Source Class metrics AccumulateAndRate MetricManager Tracks the number of sendMetric calls since the last time the metric dispatch thread ran

Vissed Metric Calls 4 metrics AccumulateAndRate MetricManager Number of discarded sendMetric calls due to gueue overflow

Name	Level	Units	Mode(s)	Source Class	Notes
Fragment Count	1	fragments	LastPoint	BoardReaderCore	
Fragment Rate	1	fragments /sec	Average	BoardReaderCore	
Werage Fragment Size	2	bytes/fragment	Average	BoardReaderCore	
hata Rate	2	bytes/sec	Average	BoardReaderCore	
we Input Wait Time	3	seconds/fragment		BoardReaderCore	Amount of time spent in CommandableFragmentGenerator::getNex
wg BoardReader Sync Wait Time	3	seconds/fragment		BoardReaderCore	Currently utused (always 0)
	3				
Wg Output Wait Time		seconds/fragment		BoardReaderCore	Amount of time spent in DataSenderManager::sendFragment
Avg Frags Per Read	4	fragments /read	Average	BoardReaderCore	
MQ Transition Time	4	s	Accumulate	Commandable	Records the amount of time spent in transitions
werage Sender Adenowledgement Time	3	seconds	Average	RoutingMasterCore	
Avg Table Acknowledge Time	3	seconds	Average	Routing Master Core	
Raceiver Tokan Rate	1	updates/sec	Average	Routing Master Core	
fable Update Rate	1	updates/sec	Average	Routing Master Core	
fotal Receiver Token Wait Time	3	seconds	Average	RoutingMasterCore	
Receiver Token Court	1	updates	LastPoint	Routing Master Core	
Table Update Count	1	updates	LastPoint	RoutingMasterCore	
ry te sRead	3	8	LastPoint	SharedMemoryReader	
wg Input Wait Time	3	s	Average	SharedMemoryReader	
wg Processing Time	2	s	Average	SharedMemoryReader	
wg Read Time	3	s	Average	SharedMemoryReader	
pueue% Used	5	95	LastPoint	SharedMemoryReader	
Data Receive Size From Rank % (RANK)	5	8	Accumulate		
Data Baceive Time From Bank (%(BANK)	5	9	Accumulate	DataBaceiverManager	
Header Receive Size From Rank %(RANK)	5	8	Accumulate	DataReceiverManager	
	5	5	Accumulate		
teader Receive Time From Rank % (RANK)		8		DataReceiverManager	
Iotal Receive Size From Rank % (RANK)	5	8	Accumulate	DataReceiverManager	
Istal Receive Time From Rank %(RANK))	5	s	Accumulate	DataReceiverManager	
Istal Shared Memory Walt Time From Rank %(RANK)	3	8	Accumulate	DataReceiverManager	
wg Fragment Wait Time From Rank %(RANK)	3	8	Average	DataReceiverManager	
Avg Shared Memory Wait Time From Rank %(RANK)	3	s	Average	DataReceiverManager	
Data Receive Rate From Rank %(RANK)	5	B/s	Average	Data Receiver Manager	
Header Receive Rate From Rank %(RANK)	5	B/s	Average	DataReceiverManager	
fital Receive Rate From Rank %(RANK)	5	B/s	Average	DataReceiverManager	
Data Reosive Count From Rank %(RANK)	3	fragments	LastPoint	DataReceiverManager	
Data Send Size to Rank % (RANK)	5	8	Accumu	DataSenderManager	
Data Send Time to Rank % (RANK)	5	s	Accumulate	DataSenderManager	
Data Send Rate to Rank % (RANK)	5	B/s	Average	Data SenderManager	
Routing Wait Time	2	8	Average	DataSenderManager	
Data Send Count to Rank % (RANK)	3	fragments	LastPoint	DataSenderManager	
Routing Table Size	2	events	LastPoint	DataSenderManager	
Request Response Time	2	seconds	Average	Request Receiver	
		Bytes			
Iverage Event Size	1	Tokens	Average LastPoint	SharedMemoryEventManager	
	2			SharedMemoryEventManager	
Events Released to art this run	1	Events	LastPoint	SharedMemoryEventManager	
Incomplete Event Count	1	events	LastPoint	SharedMemoryEventManager	
incomplete Events Released to art this run	1	Events	LastPoint	SharedMemoryEventManager	
lending Event Count	1	events	LastPoint	SharedMemoryEventManager	
Run Number	1	Run	LastPoint	SharedMemoryEventManager	
Shared Memory Available %	2	95	LastPoint	SharedMemoryEventManager	
Shared Memory Available Buffers	2	bulfers	LastPoint	SharedMemoryEventManager	
Shared Memory Full %	2	95	LastPoint	SharedMemoryEventManager	
Shared Memory Full Buffers	2	bulfers	LastPoint	SharedMemoryEventManager	
Shared Memory Pending Buffers	2	buffers	LastPoint	SharedMemoryEventManager	
Shared Memory Reading Buffers	2	bulfers	LastPoint	SharedMemoryEventManager	
Incomplete Event Rate	3	events/s	Rate	SharedMemoryEventManager	
Vert Rate	1	Events/s	Rate	SharedMemoryEventManager	
Inout Fragment Rate	1	Fragments/s	Rate	SharedMemoryEventManager	
	3	rragments/s			
lvg Data Acquisition Time	-		Average	Commandable Fragment Gener	
Buffer Depth Bytes	1	bytes	LastPoint	Commandable Fragment Gener	
Suffer Depth Fragments	1	fragments	LastPoint	Commandable Fragment Gener	
Last Timestamp	1	Ticks	LastPoint	Commandable Fragment Gener	at or

EPICS Database

Postgres DBMS

😁 smpl_mode
¹²³ smpl_mode_id
ABC name
ABC descr

🚥 smpl_er	ng
123 eng_id	
name	
and descr	
ABC url	

🔜 chan_grp				
¹²³ grp_id				
ABC name				
123 eng_id				
and descr				
123 enabling_chan_	id			
	_			

😁 num_metadata
¹²³ channel_id
123 low_disp_rng
123 high_disp_rng
123 low_warn_lmt
123 high_warn_lmt
123 low_alarm_lmt
123 high_alarm_lmt
123 prec
^{ABC} unit

Conclusion

Mu2e TDAQ system and slow controls integration status

- Advanced Slow Controls Monitoring in otsdaq
- Real configuration to send *otsdaq* front-end DAQ hardware, data processing and DQM in EPICS
- Real configuration and Integration with State Machine
- hardware tests are going on
- connection with otsdaq @ mu2e building will be done in the next years 2021-2022