uRANIA: a μ -RWELL based thermal neutron detector

sept.2020 – 106° Congresso Nazionale SIF 2020

I. Balossino^{a,b}, G. Bencivenni^c, P. Bielowkaⁱ, G. Cibinetto^a, R. Farinelli^a, G. Felici^c, I. Garzia^a, M. Gatta^c, P. Giacomelli^e, M. Giovannetti^{c,j}, R. Hall Wilton^g, C.-C. Lai^g, L. Lavezzi^d, F. Messi^f, G. Mezzadri^{a,b},

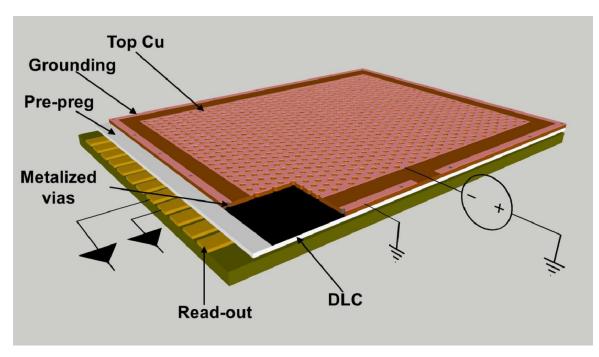
G. Morello^c, M. Pinamonti^h, M. Poli Lener^c, L. Robinson^g, M. Scodeggio^a, P.-O. Svensson^g

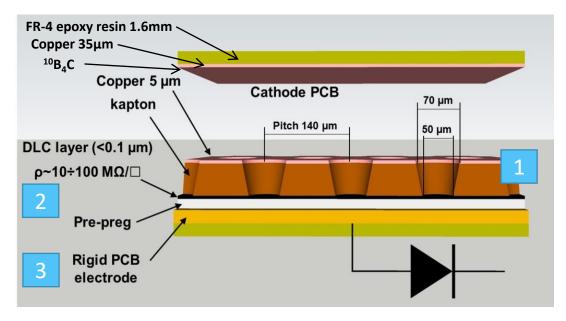
- [a] INFN-Ferrara, Ferrara, Italy
- [b] Institute of High Energy Physics, Beijing, China
- [c] INFN-National Laboratory of Frascati, Frascati, Italy
- [d] INFN-Torino, Torino, Italy
- [e] INFN-Bologna, Bologna, Italy
- [f] Lund University, Lund, Sweden
- [g] Detector Group, European Spallation Source (ESS), Lund, Sweden
- [h] Eltos SPA, Arezzo, Italy
- [i] TECHTRA, Wroclaw, Poland
- [j] Università degli Studi di Roma 'Tor Vergata', Roma, Italy

Outline

micro esistive dvanced eutron maging pparatus

- The uRANIA project
 - µ-RWELL principle of operation
 - n-B conversion
- The Source Test
 - ENEA-HOTNES facility
 - Simulation framework
- Preliminary Efficiency results


The μ -RWELL architecture



The μ -RWELL: a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode.

Cathode:

- Copper layer on an epoxy glass substrate
- Sputtered **layer of {}^{10}B_{4}C** (with variable thickness: 1.5~4.5µm)

μ-RWELL_PCB:

- **a WELL** patterned Apical foil acting as amplification stage (GEM-like)
- a resistive DLC layer for discharge suppression w/ surfaceresistivity $\sim 10 \div 200 \, \text{M} / \Box$
- a standard readout PCB

The n+B reaction

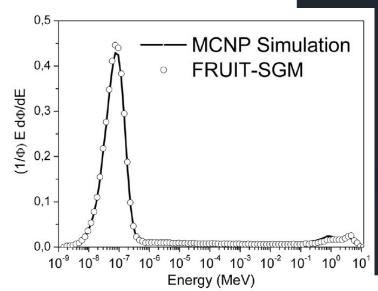
$$n + {}^{10}_{5} \text{B} \rightarrow \begin{cases} {}^{7}_{3}\text{Li}(1.02MeV) + \alpha(1.78MeV) & 6\% \\ {}^{7}_{3}\text{Li}(0.84MeV) + \alpha(1.47MeV) + \gamma(0.48MeV) & 94\% \end{cases}$$

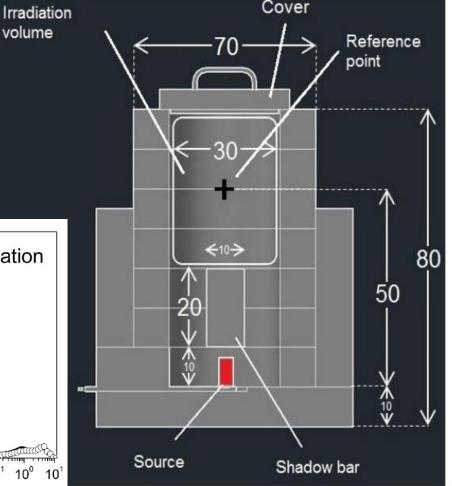
Detection of thermal neutrons (kinetic energy ~0.025 eV):

conversion to ionizing particle: ⁷Li and α
 ⁷Li/a back to back emission mutually excluded event
 Not negligible ⁷Li/a cross-section with ¹⁰B₄C optimization coating thickness to ensure the products reach the gas

The ENEA-HOTNES facility

The **HO**mogeneous **Thermal NE**utron **Source**:

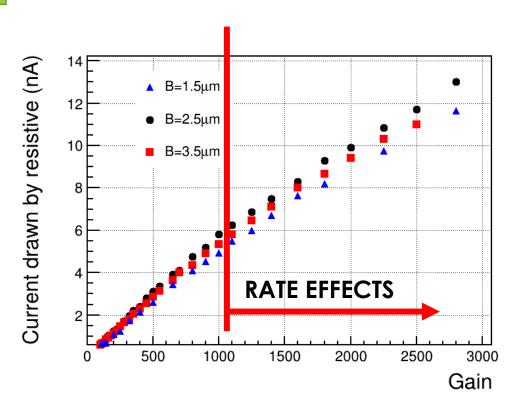

thermal neutron produced by ²⁴¹Am-Be source using polyethylene as moderator


Fully caracterized thermal neutron: energy spectrum and fluence at various Z height.

At reference point (Z=50) 758 ± 16 Hz/cm² fluence

With the cover in place, nearly uniform fluence: known angular spread distribution. Without the cover a parallel beam is obtained with a 20% reduction of the neutron flux.

Very low gamma background at reference point



Detector working point

Current drawn by resistive (nA) ▲ B=1.5μm B=2.5μm ■ B=3.5μm 10^{3} **OPERATION** Gain

Gas mixture: $Ar/CO_2/CF_4$ 45:15:10

Large ionization from alpha and Li:

$$2.2*10^4$$
, $1.1*10^4$

Rate effects begin at lower gains than for m.i.p.

Final operation range: G=[300:700]

RANGE

Preliminary Efficiency Results

Measured efficiency: from the current drawn by the detector.

$$i = eRGN = eRG \epsilon < N >$$
 $\epsilon = \frac{i}{eRG < N >}$

i: current drawn by the resistive layer of the detector

e: electron charge

R: rate of neutron impinging on the detector

G: detector gas gain

 ϵ : overall efficiency (conversion + yield)

<N>: average primary ionization of ⁷Li/a (simulated)

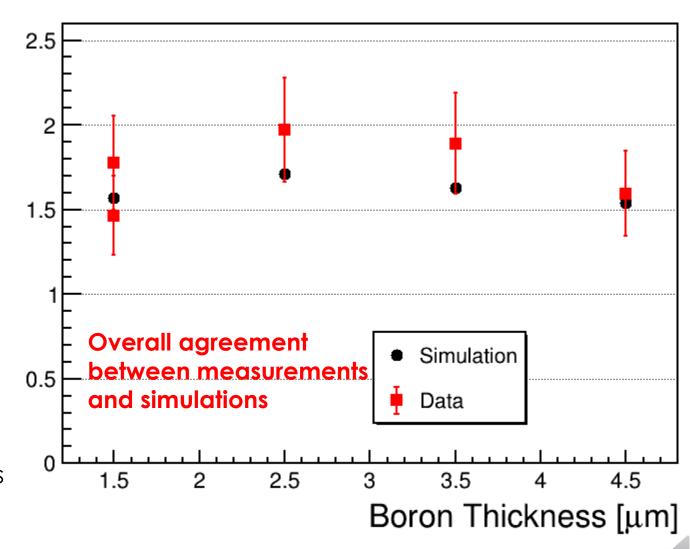
Simulated efficiency: # of 7 Li/a entering the gas over # of total impinging neutrons . GEANT4 simulation:

information from the calibrated HOTNES facility measured attenuation by the FR-4 epoxy cathode substrate

¹⁰ B ₄ C width [µm]	-	<q_alpha></q_alpha>	- #c	alpha/#n	-	<q_lithium></q_lithium>	- #li	thium/#n	-	<q_total></q_total>
1.5	-	0.93 MeV	-	1.01%	-	0.44 MeV	-	0.55%	-	0.76 MeV
2.5	-	0.83 MeV	-	1.17%	-	0.45 MeV	-	0.53%	-	0.71 MeV
3.5	-	0.83 MeV	-	1.12%	-	0.45 MeV	-	0.50%	_	0.71 MeV
4.5	_	0.84 MeV	_	1.06%	_	0.45 MeV	_	0.47%	_	0.72 MeV

Preliminary Efficiency Results

Efficiency [%

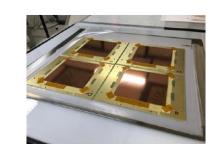

Measured efficiency

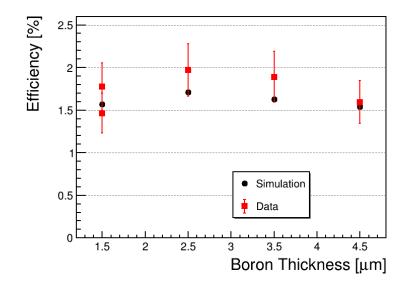
$$i = eRGN = eRG \epsilon < N >$$
 $\epsilon = \frac{i}{eRG < N >}$

Simulated efficiency

¹⁰ B₄C width [µm]	_ •	total efficiency
1.5	-	1.57%
2.5	-	1.71%
3.5	_	1.63%
4.5	_	1.55%

Values for HOTNES energy spectrum: for monocromatic 0.025eV thermal neutrons the efficiency will be a factor 2 higher, due to the increase of the n-10B₄C cross section.




Summary

The uRANIA-ATTRACT project aim at the development of a detector based on μ-RWELL technology to perform neutron imaging with a few μm ¹⁰B₄C thermal neutron conversion stage.

Overall neutron detection efficiency: $1.5\sim2.0(\pm0.2)\%$ showing agreement between measurements and simulations.

Futurel plans:

Placing a stack of boron coated aluminum mesh between the cathode and the PCB Study different 3D structures of the cathode to increase the conversion surface in a fixed volume (e.g. honeycomb structures) Counting mode measurements

