uRANIA: a μ -RWELL based thermal neutron detector sept.2020 – 106° Congresso Nazionale SIF 2020 I. Balossino^{a,b}, G. Bencivenni^c, P. Bielowkaⁱ, G. Cibinetto^a, R. Farinelli^a, G. Felici^c, I. Garzia^a, M. Gatta^c, P. Giacomelli^e, M. Giovannetti^{c,j}, R. Hall Wilton^g, C.-C. Lai^g, L. Lavezzi^d, F. Messi^f, G. Mezzadri^{a,b}, G. Morello^c, M. Pinamonti^h, M. Poli Lener^c, L. Robinson^g, M. Scodeggio^a, P.-O. Svensson^g - [a] INFN-Ferrara, Ferrara, Italy - [b] Institute of High Energy Physics, Beijing, China - [c] INFN-National Laboratory of Frascati, Frascati, Italy - [d] INFN-Torino, Torino, Italy - [e] INFN-Bologna, Bologna, Italy - [f] Lund University, Lund, Sweden - [g] Detector Group, European Spallation Source (ESS), Lund, Sweden - [h] Eltos SPA, Arezzo, Italy - [i] TECHTRA, Wroclaw, Poland - [j] Università degli Studi di Roma 'Tor Vergata', Roma, Italy #### Outline micro esistive dvanced eutron maging pparatus - The uRANIA project - µ-RWELL principle of operation - n-B conversion - The Source Test - ENEA-HOTNES facility - Simulation framework - Preliminary Efficiency results #### The μ -RWELL architecture The μ -RWELL: a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. #### Cathode: - Copper layer on an epoxy glass substrate - Sputtered **layer of {}^{10}B_{4}C** (with variable thickness: 1.5~4.5µm) μ-RWELL_PCB: - **a WELL** patterned Apical foil acting as amplification stage (GEM-like) - a resistive DLC layer for discharge suppression w/ surfaceresistivity $\sim 10 \div 200 \, \text{M} / \Box$ - a standard readout PCB #### The n+B reaction $$n + {}^{10}_{5} \text{B} \rightarrow \begin{cases} {}^{7}_{3}\text{Li}(1.02MeV) + \alpha(1.78MeV) & 6\% \\ {}^{7}_{3}\text{Li}(0.84MeV) + \alpha(1.47MeV) + \gamma(0.48MeV) & 94\% \end{cases}$$ Detection of thermal neutrons (kinetic energy ~0.025 eV): conversion to ionizing particle: ⁷Li and α ⁷Li/a back to back emission mutually excluded event Not negligible ⁷Li/a cross-section with ¹⁰B₄C optimization coating thickness to ensure the products reach the gas ## The ENEA-HOTNES facility The **HO**mogeneous **Thermal NE**utron **Source**: thermal neutron produced by ²⁴¹Am-Be source using polyethylene as moderator Fully caracterized thermal neutron: energy spectrum and fluence at various Z height. At reference point (Z=50) 758 ± 16 Hz/cm² fluence With the cover in place, nearly uniform fluence: known angular spread distribution. Without the cover a parallel beam is obtained with a 20% reduction of the neutron flux. Very low gamma background at reference point ## Detector working point Current drawn by resistive (nA) ▲ B=1.5μm B=2.5μm ■ B=3.5μm 10^{3} **OPERATION** Gain Gas mixture: $Ar/CO_2/CF_4$ 45:15:10 Large ionization from alpha and Li: $$2.2*10^4$$, $1.1*10^4$ Rate effects begin at lower gains than for m.i.p. Final operation range: G=[300:700] **RANGE** ## Preliminary Efficiency Results Measured efficiency: from the current drawn by the detector. $$i = eRGN = eRG \epsilon < N >$$ $\epsilon = \frac{i}{eRG < N >}$ i: current drawn by the resistive layer of the detector e: electron charge R: rate of neutron impinging on the detector G: detector gas gain ϵ : overall efficiency (conversion + yield) <N>: average primary ionization of ⁷Li/a (simulated) **Simulated efficiency**: # of 7 Li/a entering the gas over # of total impinging neutrons . GEANT4 simulation: information from the calibrated HOTNES facility measured attenuation by the FR-4 epoxy cathode substrate | ¹⁰ B ₄ C width [µm] | - | <q_alpha></q_alpha> | - #c | alpha/#n | - | <q_lithium></q_lithium> | - #li | thium/#n | - | <q_total></q_total> | |---|---|---------------------|------|----------|---|-------------------------|-------|----------|---|---------------------| | 1.5 | - | 0.93 MeV | - | 1.01% | - | 0.44 MeV | - | 0.55% | - | 0.76 MeV | | 2.5 | - | 0.83 MeV | - | 1.17% | - | 0.45 MeV | - | 0.53% | - | 0.71 MeV | | 3.5 | - | 0.83 MeV | - | 1.12% | - | 0.45 MeV | - | 0.50% | _ | 0.71 MeV | | 4.5 | _ | 0.84 MeV | _ | 1.06% | _ | 0.45 MeV | _ | 0.47% | _ | 0.72 MeV | ## Preliminary Efficiency Results Efficiency [% #### **Measured efficiency** $$i = eRGN = eRG \epsilon < N >$$ $\epsilon = \frac{i}{eRG < N >}$ #### Simulated efficiency | ¹⁰ B₄C width [µm] | _ • | total efficiency | |------------------------------|-----|------------------| | 1.5 | - | 1.57% | | 2.5 | - | 1.71% | | 3.5 | _ | 1.63% | | 4.5 | _ | 1.55% | Values for HOTNES energy spectrum: for monocromatic 0.025eV thermal neutrons the efficiency will be a factor 2 higher, due to the increase of the n-10B₄C cross section. #### Summary The uRANIA-ATTRACT project aim at the development of a detector based on μ-RWELL technology to perform neutron imaging with a few μm ¹⁰B₄C thermal neutron conversion stage. Overall neutron detection efficiency: $1.5\sim2.0(\pm0.2)\%$ showing agreement between measurements and simulations. #### Futurel plans: Placing a stack of boron coated aluminum mesh between the cathode and the PCB Study different 3D structures of the cathode to increase the conversion surface in a fixed volume (e.g. honeycomb structures) Counting mode measurements