ATLAS Inner Tracker Detector per l'Upgrade High-Luminosity

Caratterizzazione di moduli RD53A con sensori 3D

Leonardo Vannoli

SIF 2020

Indice

- HL-LHC upgrade e le nuove sfide di ATLAS
- ATLAS Inner Tracker (ITk) layout
- Sensori a pixel
 - Sensori planari e sensori 3D
- Performance attese
- Aggiornamento del layout:
 - Avvicinamento di L0 alla beam pipe
- Scelta della dimensione dei pixel di L0
- Moduli 3D RD53A
- Efficienza dei moduli 3D testati su fascio
- Conclusioni

High Luminosity LHC

- Nel 2027 è prevista la messa in funzione dell'upgrade **HL-LHC**, con il quale sarà incrementata la luminosità del fascio tra 5 e 7.5 volte la luminosità nominale e sarà raggiunta l'energia nel centro di massa di $\sqrt{S} = 14 TeV$.
- Questo upgrade aumenterà la capacità di scoperta di nuove particelle e migliorerà lo studio di eventi rari.

https://project-hl-lhc-industry.web.cern.ch/sites/project-hl-lhc-industry.web.cern.ch/files/inline-images/HL-LHC-plan-2020-Plan-1.pdf

Significativo aumento del pile-up

 $\mathcal{L} = 2.1 \times 10^{34} \, cm^2 s^{-1}$ $<\mu>=36.1$

- L'aumento di luminosità dovuto all'upgrade HL-LHC comporterà un aumento del pile-up:
 - Alta molteplicità di particelle prodotte negli impatti tra i protoni; 0
 - Aumento del danno da radiazione del rivelatore, specialmente nei rivelatori prossimi 0 alla beam pipe.

ps://cds.cern.ch/record/1419213/plots

HL-LHC

 $\mathscr{L} \approx 7.5 \times 10^{34} \, cm^2 s^{-1}$ $<\mu>\approx 200$

ATLAS ITk upgrade per HL-LHC

- ATLAS sostituirà l'intero Inner Detector con un nuovo **Inner Tracker (ITk)** totalmente in silicio per far fronte all'aumento di luminosità.
- La **copertura** del rivelatore verrà **aumentata** fino a $|\eta| = 4$.
- ITk si compone di 4 layer di strip e 5 layer di pixel.
- Le linee guida per i layer a pixel prevedono:
 - Layer esteri ed interni: **sensori planari** al silicio n-in-p;
 - Layer 0 (strato più interno): sensori 3D, con possibilità di sostituzione del layer.

Sensori 3D e planari

Le tipologie di sensore che verranno adottate per ITk saranno due:

Sensori 3D: •

- Maggiore resistenza alla radiazione dovuta alla minore lunghezza di drift della carica; 0
- Minore probabilità di intrappolamento della carica; 0
- Campo elettrico alto con minori voltaggi; 0
- $50 \times 50 \,\mu m^2 \,\mathrm{e}\, 25 \times 100 \,\mu m^2$ un elettrodo (1E);
- I sensori $25 \times 100 \, \mu m^2$ due elettrodi sono stati scartati in R&D perché di difficile produzione.

Sensori planari:

- Configurazione n-in-p;
- Dimensione $50 \times 50 \,\mu m^2$; 0
- Spessore $100 150 \,\mu m$.

Performance attese

- L'efficienza si mantiene sopra l'85% fino a |η| = 4 ed è compatibile con quella del Run-2
 ID a <μ>=36.1.
- Rispetto al Run-2 ID, si ha un eccellente miglioramento della Fake Rate. Tale valore si riduce di un fattore 10, nonostante vi sia un fattore 10 di aumento del pile up.
- Questo è dovuto alla riduzione della quantità di materiale, all'aumento degli hit per ogni traccia e alla maggiore ermeticità di ITk.

Risoluzione parametro d'impatto

- Il parametro d'impatto, definito come la distanza minima tra la traccia e la posizione media del fascio lungo uno specifico asse.
 - Il parametro d_0 trasverso è la distanza radiale nel piano xy;
 - Il parametro z_0 longitudinale lungo l'asse z. 0
- Questi parametri sono cruciali per la classificazione delle particelle, la reiezione del pile-up e, conseguentemente, per il miglioramento del b-tagging.

Avvicinamento del Layer 0

Barrel Layer	Radius [mm]	Rows of Sensors	Flat sensors per Row	Inclined sensors per Row	Type	Hits
0	34	12	12	-	singles	1
1	99	20	6	_	quads	1
2	160	32	9	6	quads	1
3	228	44	9	8	quads	1
4	291	56	9	9	quads	1

- Per aumentare la risoluzione dei parametri di impatto d_0 e z_0 è stato scelto di **avvicinare il** Layer 0 (L0) del barrel al beam pipe, diminuendo il raggio interno di L0 da 39 mm a 34 mm.
- Questa scelta implica però un aumento della dose di radiazione assorbita da parte di L0 del 30% rispetto alla configurazione con raggio di 39 mm.
- È prevista la sostituzione anticipata del L0 nel caso in cui le prestazioni del detector dovessero risultare inferiori agli standard di ATLAS

Scelta della dimensione dei pixel per L0

Transverse d_0

Longitudinal z_0

La risoluzione di d_0 ottenuta con i sensori $50 \times 50 \,\mu m^2$ risulta compatibile con quella del Run-2 ID, ma migliora con sensori $25 \times 100 \,\mu m^2$.

- La **risoluzione di** *z*₀ **migliora rispetto a Run-2** ID con sensori di entrambe le dimensioni.
- Per ottenere una miglior risoluzione in entrambi i parametri è **stata scelta la dimensione dei pixel di LO** $25 \times 100 \, \mu m^2$.

Moduli 3D con FrontEnd RD53A

- I Moduli 3D si compongono di:
 - Sensore 3D
 - Elettronica di Readout (il chip di FrontEnd)
 - Interconnection (boup bounds)
 - Interfaccia elettrica (dati e alimentazione)
- I chip RD53A sono divisi in 3 diversi FrontEnd:
 - Synchronous
 - Linear
 - Differential
- L'architettura Differential è stata scelta da ATLAS per i chip finali

http://www.hep.ph.bham.ac.uk/general/seminars/slides/Laura-Gonnella-2018.pd

CERN-RD53-PUB-17-00⁻

Test su fascio dei moduli RD53A

Test beam presso **SPS CERN** nel 2018:

- Sono stati testati i moduli RD53A con sensori $25 \times 100 \, \mu m^2$ e 0 $50 \times 50 \,\mu m^2$ pre-irraggiamento;
- Il telescopio è composto da EUDET + ATLAS FE-I4 come 0 riferimento temporale;
- Device Under Test (DUT) non irraggiati sono tenuti a 20°C.

- Sono stati testati i moduli RD53A con sensori $25 \times 100 \, \mu m^2$ e 50 × 50 μm^2 irraggiati a 1 × 10¹⁶ n_{eq}/cm^2 ;
- Il telescopio è composto da EUDET + ATLAS FE-I4 come riferimento temporale;
- Il telescopio ha una precisione di tracciamento di $\sim 2\mu m$; DUT irraggiati sono tenuti a $-50^{\circ}C < T < -25^{\circ}C$ con ghiaccio secco.

Test beam presso **DESY** nel 2019:

Efficienza dei moduli prima dell'irraggiamento

- Prima dell'irraggiamento i moduli hanno una alta efficienza anche a tensione di bias molto bassa.
- **L'efficienza risulta** > 97 % per entrambe le topologie già a 0 V con tracce incidenti perpendicolarmente al modulo.
- **L'efficienza** > 99 % è stata ottenuta **inclinando** il modulo di 15° rispetto al fascio e con una tensione di bias da 0 a 8 V.

L'efficienza del singolo pixel risulta più bassa in prossimità delle colonne p^+ come si evince dai tre grafici a sinistra.

Questo è dovuto al fatto che il fascio è composto di e^- .

Efficienza dopo irraggiamento $1 \times 10^{16} n_{eq}/cm^2$

W4_1-5

W1_3-1

SIF 2020 | Leonardo Vannoli

Sensore $50 \times 50 \,\mu m^2$:

- W3_1-7 irradiato a CYRIC + Birmingham;
- W4_1-5 Irradiato a KIT
 + Birmingham.
- Sensore $25 \times 100 \,\mu m^2$:
- W1_3-1 irradiato a KIT
 - + Birmingham;
- I moduli sono tenuti a -50 < T < -25 durante la presa dati.

I risultati ottenuti tra il W4_1-5 ($50 \times 50 \mu m^2$) e il W1_3-1 ($25 \times 100 \mu m^2$) @140V sono tra loro compatibili, con **un'efficienza di** ~ 98 %. La baseline di ATLAS prevede efficienze > 97 % a fine vita del modulo.

Conclusioni

- L'upgrade ATLAS ITK è progettato per lavorare alle estreme condizioni dovute a HL-LHC.
 - Completamente in silicio, alta granularità, estende la copertura in η e aumenta l'ermeticità.
- ITK porterà inoltre grandi miglioramenti sul fronte delle prestazioni:
 - Ottimizzerà la ricostruzione ad alta luminosità;
 - Manterrà alte efficienze di ricostruzione con bassa fake rate (migliorando le prestazioni 0 rispetto a Run 2-ID);
 - Fornirà buone risoluzioni sui parametri di impatto.
- Per migliorare ulteriormente le performance, la baseline del Layer 0 del barrel prevede l'impiego di pixel 3D di dimensione $25 \times 100 \,\mu m^2$ e la riduzione del suo raggio a 34 mm.
- I risultati dei test beam sono inoltre incoraggianti:
 - Dopo un irraggiamento uniforme a $1 \times 10^{16} n_{eq}/cm^2$ l'efficienza:
 - compresa tra 80 V e 140 V.
- **Prossimamente**:
 - Testare su fascio moduli irradiati fino a $2 \times 10^{16} n_{ea}/cm^2$.

• >97% sia per sensori $50 \times 50 \mu m^2$ che per i sensori $25 \times 100 \mu m^2$ -1E ad una tensione

