106° Congresso Nazionale della Società Italiana di Fisica 14-18 settembre 2020

Misura di asimmetria CP nei decadimenti in due corpi senza quark charm dei mesoni B^0 e B^0_s a LHCb

> D. Manuzzi Università di Bologna

Motivazioni

- Lo studio dei processi governati dalla matrice CKM permette verifiche stringenti del Modello Standard (SM)
- Gli osserva $(\operatorname{con} h = K)$ e dalla fase

te di *CP* nei decadimenti $B^0_{(s)} \rightarrow h^+h^$ dagli angoli $\alpha \in \gamma$ del Triangolo Unitario nto $\beta_{\rm s}$ dei mesoni $B_{\rm s}$

 Diverse tipologie al alagram i decadimenti $B^0_{(s)} \rightarrow h^+ h^-$

O incertezze dovute a processi adror O nuova fisica può comparire come (

RICERCA INDIRETTA DI NUOVA FISICA

Jazionale na di Fisica

Obiettivi

- Misura di asimmetria *CP* integrata nel tempo per $B^0 \rightarrow K^+ \pi^- e B_s^0 \rightarrow \pi^+ K^-$
- Misura di asimmetria *CP* dipendente dal tempo per $B^0 \rightarrow \pi^+ \pi^- e B_s^0 \rightarrow K^+ K^-$

CP DI INTERF DECADIMI

Vincolo di unitarietà: $|C_f|^2 + |S_f|^2 +$

daniele.manuzzi@cern.ch

106° Cong della Società [Phys. Rev. D 98 (2018) 032004]

$$A_{CP} = \frac{|\bar{A}_{\bar{f}}|^2 - |A_f|^2}{|\bar{A}_{\bar{f}}|^2 + |A_f|^2}$$

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}_{(s)}^0 \to f}(t) - \Gamma_{\bar{B}_{(s)}^0 \to f}(t)}{\Gamma_{\bar{B}_{(s)}^0 \to f}(t) + \Gamma_{\bar{B}_{(s)}^0 \to f}(t)}$$

$$CPT \text{ sim.}$$

$$S_f \sin(\Delta m_{d(s)}t) - C_f \cos(\Delta m_{d(s)}t)$$

$$CPT \sin(\Delta m_{d(s)}t) - C_f \cos(\Delta m_{d(s)}t$$

Composizione dei dati e selezione • Dati raccolti nel Run1 di LHCb ($\sim 3 \text{ fb}^{-1}$)

- Sorgenti di fondo:
 - **O** Contaminazione incrociata
 - O Associazione di tracce random
 - O Decadimenti in 3 corpi

HCb INFN

daniele.manuzzi@cern.ch

106° Congresso Nazionale della Società Italiana di Fisica

$B^0 o \pi^+\pi^-$	$B_s ightarrow K^+ K^-$
\sim 28 600	\sim 36 800
$B^0 o K^+ \pi^-$	$B_s o \pi^+ K^-$
\sim 94 200	\sim 7 000

Strategia dell'analisi

- Le asimmetrie di *CP* sono determinate da un fit **multidimensionale** e **simultaneo** degli spettri $K^{\pm}\pi^{\mp}$, $K^{+}K^{-}$ e $\pi^{+}\pi^{-}$
 - Osservabili: $m(h^+h^-)$, tempo di decadimento, δ_t , probabilità di tag errato (η_{OS} , η_{SS})
 - O Migliore stima della contaminazione tra i vari campioni
 - O Diversi effetti sperimentali stimati da $B_{(s)}^0 \to K^{\pm}\pi^{\mp}$ direttamente durante il fit

• Effetti sperimentali da considerare: \circ Asimmetria di produzione (A_P)

 $\bullet \ \sigma(pp \to B^0 X) \neq \sigma(pp \to \overline{B}{}^0 X)$

• Asimmetrie di rivelazione $(A_{E}^{K\pi}, A_{PID}^{K\pi})$

♦ diverse efficienze di rivelamento e identificazione tra K^+ , K^- , π^+ e π^-

\circ Flavour tagging (ω)

 \bigstar distinguere tra $B^0_{(s)} \to f \in \overline{B}^0_{(s)} \to f$ se $f = \pi^{+}\pi^{-}, K^{+}K^{-}$

• Risoluzione sul tempo di

decadimento (σ_t)

o Accettanza temporale ($\epsilon_{acc}(t)$)

Variazione dell'efficienza di ricostruzione al variare del tempo di decadimento

106° Congresso Nazionale della Società Italiana di Fisica

• Lo stato finale dei processi $B^0 \to K^+ \pi^-$ e $B^0_s \to \pi^+ K^-$ definisce il sapore del mesone $B^0_{(s)}$ al decadimento. Perciò:

$$\frac{N_{\bar{f}}(t) - N_f(t)}{N_{\bar{f}}(t) + N_f(t)} \sim A_{CP} + A_F^{K\pi} + A_{PID}^{K\pi} + A_P \cos(\Delta m_{d(s)} t)$$

• $A_F^{K\pi}$: misurata tramite i decadimenti $D^+ \rightarrow K^- \pi^+ \pi^+ e D^+ \rightarrow \bar{K}^0 \pi^+$ [JHEP 07 (2014) 041]

• $A_{PID}^{K\pi}$: misurata tramite i decadimenti $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$

Asimmetrie di rivelazione e produzione

106° Congresso Nazionale della Società Italiana di Fisica

Flavour tagging

- - altre particelle emesse nella sua frammentazione
 - del secondo mesone *B* prodotto nell'evento

dal tempo

daniele.manuzzi@cern.ch

$$A_{RAW}(t)$$

106° Congresso Nazionale della Società Italiana di Fisica

technische universität dortmund

Correzioni per l'asimmetria dipendente dal tempo

• I canali $B^0 \to D^- \pi^+ e B_s^0 \to D_s^- \pi^+$ sono usati per per stimare le diluizioni dovute a flavour tagging e risoluzione temporale, rispettivamente

Nel caso del B^0 la diluizione dovuta a σ_t è trascurabile grazie al valore di Δm_d

$$D_{tag} = 1 - 2\omega$$
$$D_t = \exp(-\sigma_t \Delta m_{d(s)}/2)$$

daniele.manuzzi@cern.ch

106° Congresso Nazionale della Società Italiana di Fisica

Accettanza temporale

- $\epsilon_{acc}(t)$ per $B^0 \to K^+ \pi^-$: rapporto tra decadimenti osservati in funzione del tempo ed esponenziale puro ($\Gamma = 1/\tau_{B^0}$)
- Simulazione MC usata per adattare la curva trovata anche per gli altri canali di segnale

106° Congresso Nazionale della Società Italiana di Fisica

Risultati per $B_{(s)}^0$ 20000 3000 8000 Candidates / (5 MeV/c²) 0009 0009 0009 0009 0009 0009 LHCb LHCb LHCb (5.5 fs) 50 fs) 2000 Candidates /

1000

2

6

Decay time [ps]

0.02

0.04

 δ_t [ps]

Questi risultati possono essere usati per il test del Modello Standard proposto in [PLB 621 (2005) 126]

5.6

5.4

 $m_{K^{+}\pi^{-}}$ [GeV/ c^{2}]

5.2

5.8

0^{**L**} 5

$$\Delta = \frac{A_{CP}^{B^0}}{A_{CP}^{B_s^0}} + \frac{\mathbf{B}(B_s^0 \to \pi)}{\mathbf{B}(B^0 \to K)}$$

daniele.manuzzi@cern.ch

10

8

12

106° Congresso Nazionale della Società Italiana di Fisica

Risultati per B^{U}

daniele.manuzzi@cern.ch

106° Congresso Nazionale della Società Italiana di Fisica

Vincolo di unitarietà: $|C_{KK}|^2 + |S_{KK}|^2 + |A_{KK}^{\Delta\Gamma}|^2 = 0.83 \pm 0.12$

Prospettive

- Aggiornamento di queste misure con i dati raccolti nella prima parte del Run2 (2 fb^{-1}) vicino alla pubblicazione
- di selezione e flavour tagging

Incertezze ridotte grazie a: maggiore sezione d'urto, miglioramento

