106° Congresso Nazionale Società Italiana di Fisica Milano, 14-18 settembre 2020

Piera Muzzetto [Università degli studi di Cagliari e INFN] a nome della collaborazione LHCb

Istituto Nazionale di Fisica Nucleare

La fase di violazione di CP ϕ_s

La fase di violazione di CP ϕ_s deriva dall'interferenza fra il decadimento di un mesone B_s in uno stato finale di CP f e il decadimento dopo il mixing.

$$\phi_s = \phi_{mix} - 2 \, \phi_{dec}$$

Perché è importante studiare ϕ_s ?

- ✓ Perfetto test del MS
- ✓ Molto sensibile ad effetti di fisica oltre il Modello Standard (MS)
- ✓ Predetta con precisione nel MS (al primo ordine), $\phi_s^{SM} = -2\beta_s = -0.03686^{+0.00096}_{-0.00068}$ rad [CKM fitter]

- Dove studiare ϕ_s ?
- Tramite transizioni $b \to c\bar{c}s$, in decadimenti come $B_s \to J/\psi K^+ K^-$ and $B_s \to J/\psi \pi^+ \pi^-$

La fase di violazione di CP $\phi_{ m s}$

Determinazione della fase di violazione di CP ϕs a LHCb

 $\overline{B_s^0}$

b

La fase di violazione di CP $\phi_{ m s}$

FASE MISURABILE: CPV due to mixing-decay interference

$$\phi_s = \phi_s^{SM} + \Delta \phi_s^{peng} + \Delta \phi_s^{NP} - 2\beta_s$$

Datasets used:

2015: 0.3 fb ⁻¹
2016: 1.6 fb ⁻¹
2017: 1.7 fb ⁻¹
2018: 2.1 fb ⁻¹

Canali di decadimento discussi in questa presentazione:

X

$B_s \rightarrow J/\psi(\mu^+\mu^-)K^+K^-$

- Canale d'oro
- Maggiore BR, $O(10^{-5})$
- Stato finale accessibile sia dalla componente CP-even che CP-odd
- Permette di ottenere $\Gamma_s = \frac{\Gamma_H + \Gamma_L}{2}$, $\Delta\Gamma_s = \Gamma_H - \Gamma_L$ and $\Delta m_s = m_H - m_L$
- Dominato dal contributo al primo ordine

$B_s \rightarrow J/\psi(\mu^+\mu^-)\pi^+\pi^-$

- BR, *O*(10⁻⁶)
- Stato finale quasi interamente CP-odd
- Permette di ottenere Γ_H
 - Dominato dal contributo al primo ordine

LHCP

Strategia di analisi

Strategia: analisi angolare e dipendente dal tempo.

Definizione della asimmetria CP dipendente dal tempo:

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s(t) \to f) - \Gamma(B^0_s(t) \to f)}{\Gamma(\bar{B}^0_s(t) \to f) + \Gamma(B^0_s(t) \to f)} = \eta_f \sin \phi_s \sin(\Delta m_s t)$$

Sperimentalmente : $A_{CP}(t) = \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin \phi_s \cdot \sin(\Delta m_s t)$

Requisiti:

- Conoscenza dell'autovalore di CP dello stato finale $\eta_f \rightarrow$ analisi angolare;
- $\square B_s \text{ oscilla velocemente } \rightarrow \text{ eccellente risoluzione temporale } \sigma_t;$
- Conoscenza del sapore del mesone alla produzione: probabilità di sbagliare l'identificazione ω ;
- Modellare le efficienze angolari e temporale $\varepsilon(t, \Omega)$ nelle distribuzioni differenziali del tempo di decadimento

Sono stati utilizzati degli alberi decisionali per selezionare i candidati di segnale

• La larghezza della distribuzione del segnale dipende evento per evento dall' errore della massa invariante, per scorrelarla dal $cos \theta_{\mu}$

Il fondo combinatoriale è stimato usando un campione di dati di $J/\psi \pi^{\pm}\pi^{\pm}$ (wrong-sign data)

Piera Muzzetto

Determinazione della fase di violazione di CP ϕs a LHCb

Risoluzione temporale

Per stimare la risoluzione temporale evento per evento viene utilizzato l'errore sul tempo di decadimento (δ_t), calibrato usando un campione di dati $J/\psi h^+h^-$ provenienti dal vertice primario

Modello di risoluzione: tripla Gaussiana $\longrightarrow \sigma_{eff}(\delta t) = \sqrt{(-2/\Delta m_s^2) lnD}$, with $D = \sum_{i=1}^3 f_i e^{-\sigma_i^2 \Delta m_s^2/2}$

Canale di controllo: $B^0 \rightarrow J/\psi K^*(892)^0$ (τ noto con elevata precisione $\tau_{B^0} = \frac{1}{\Gamma_d} = 1.520 \pm 0.004 \text{ ps}$).

 $B_s \to J/\psi K^+ K^-$

 $B_s \rightarrow J/\psi \pi^+ \pi^-$

La selezione e l'accettanza geometrica del rivelatore hanno un'efficienza non uniforme negli angoli di elicità

Identificazione del sapore

$B_s \to J/\psi K^+ K^-$

 $B_s \rightarrow J/\psi \pi^+ \pi^-$

Due algoritmi: same side (SS) e opposite side (OS)

SS: il sapore del B_s^0 è correlato alla carica del K creato nella stessa frammentazione

OS: il sapore del B_s^0 è anti-correlato con la carica dello stato finale dell'altro adrone b

Per stimarne il rendimento si usa il **tagging power** $\varepsilon_{tag}D^2 = \varepsilon_{tag}(1 - 2\omega)^2$ Grande tagging power = migliore sfruttamento dei dati

 $\varepsilon_{tag} D^2$ = 4.73 \pm 0.34 %

$$\varepsilon_{tag} D^2$$
= 5.06 ± 0.38 %

Risultati

$$B_s^0 \rightarrow J/\psi K^+ K^-$$

 $\phi_s = -0.083 \pm 0.041 \pm 0.006 \text{ rad}$
 $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$
 $\phi_s = -0.057 \pm 0.060 \pm 0.011 \text{ rad}$

Combinazione di tutti i risultati di LHCb (Run1 and 2)

 $\phi_s = -0.041 \pm 0.025$ rad

 $φ_s$ 0.1 σ away from SM in accordo con il MS

 ϕ_s 1.6 σ away from 0 consistente con l'assenza di CPV nell'interferenza

Conclusioni and prospettive future

- Sono state presentate le misure più precise di $\phi_s^{c\bar{c}s}$ eseguite utilizzando i dati raccolti da LHCb nel 2015 e nel 2016;
- I risultati sono consistenti con le predizioni del MS e con l'assenza di CPV nell'interferenza:
 - Tali resultati sono principalmente dominati dalla statistica

Prospettive future

300/fb:
$$\sigma^{STAT}(\phi_s) \sim 4 \text{ mrad}$$
 usando solo $B_s^0 \rightarrow J/\psi KK$

• ϕ_s sarà limitato dalla statistica

Prossimo futuro

- Le analisi dei dati raccolti nel 2017-2018 sono in sviluppo ed è atteso un significativo miglioramento nella precisione della misura di ϕ_s
- Nuova misura con $B_s \rightarrow J/\psi(\rightarrow e^+ e^-)K^+K^-$

Diapositive di supporto

Misura di ϕ_s a LHCb

È richiesta un'analisi angolare per separare le componenti CP-even e CP-odd dello stato finale. Per questo viene studiato la distribuzione differenziale del tempo di decadimento:

$$\frac{d^4\Gamma}{dtd\Omega} \sim \sum_k f_k(\Omega)\varepsilon(t,\Omega)(1-2\omega)h_k(t|B_s^0)\otimes G(t|\sigma_t) \quad -$$

$$h_k = e^{-\Gamma_s t} \left[a_k \cosh \frac{\Delta \Gamma_s t}{2} + b_k \sinh \frac{\Delta \Gamma_s t}{2} + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$

Con
$$\Gamma_s = \frac{\Gamma_H + \Gamma_L}{2}$$
 and $\Delta \Gamma_s = \Gamma_L - \Gamma_H$

NB: la PDF viene valutata per 4 casi di identificazione di sapore: SS, OS, SS and OS, candidati non identificati.

Viene fatto un fit simultaneo in differenti sotto-campioni: m(KK) 6 bin (analisi di ampiezza in $B_s \rightarrow J/\psi \pi \pi$), anno, categoria di trigger and identificazione del sapore Tutti i parametri fisici sono tenuti liberi e in comune fra i sotto-campioni, eccetto per le frazioni della componente S-wave nei bin di m(KK).

Risultati $B_s \rightarrow J/\psi K^+ K^-$

Eur. Phys. J. C 79 (2019) 706

LHC

Risultati $B_s \rightarrow J/\psi \pi^+ \pi^-$

Phys. Lett. B797 (2019) 134789

Identificazione del sapore: calibrazione e rendimento

- Vengono usati due algoritmi di identificazione del sapore:
 - opposite side e same side.
- Campioni di calibrazione:

Sistematiche per $B_s \rightarrow J/\psi K^+K^-$

Eur. Phys. J. C 79 (2019) 706

ϕ_s è affetta soprattutto da Time res. & Ang. Acc., $\Delta\Gamma_s$ ($|\lambda|$) da Mass factorisation (& Ang. Acc.), $\Gamma_s - \Gamma_d$ da Time eff.

Source	$ A_0 ^2$	$ A_{\perp} ^2$	$\phi_s \; [\mathrm{rad} \;]$	$ \lambda $	$\delta_{\perp} - \delta_0 \; [\mathrm{rad} \;]$	$\delta_{\parallel} - \delta_0 \; [{ m rad} \;]$	$\Gamma_s - \Gamma_d \; [\mathrm{ps}^{-1}\;]$	$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	$\Delta m_s [\mathrm{ps}^{-1}]$
Mass width parametrisation	0.0006	0.0005	-		0.05	0.009	-	0.0002	0.001
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.01	0.004	0.0007	0.0022	0.016
Multiple candidates	0.0006	0.0001	0.0011	0.0011	0.01	0.002	0.0003	0.0001	0.001
Fit bias	0.0001	0.0006	0.001	-	0.02	0.033	-	0.0003	0.001
$C_{\rm SP}$ factors	-	0.0001	0.001	0.0010	0.01	0.005	-	0.0001	0.002
Time res.: applicability of prompt	-	-	-	-	-	0.001	-	-	0.001
Time res.: t bias	-	-	0.0032	0.0010	0.08	0.001	0.0002	0.0003	0.005
Time res.: wrong PV	-	-		-	-	0.001	-	-	0.001
Ang. acc.: MC sample size	0.0003	0.0004	0.0011	0.0018	-	0.004	-	-	0.001
Ang. acc.: BDT correction	0.0020	0.0011	0.0022	0.0043	0.01	0.008	0.0001	0.0002	0.001
Ang. acc.: low-quality tracks	0.0002	0.0001	0.0005	0.0014	-	0.002	0.0002	0.0001	-
Ang. acc.: $t \& \sigma_t$ dependence	0.0008	0.0012	0.0012	0.0007	0.03	0.006	0.0002	0.0010	0.003
Dectime eff.: statistical	0.0002	0.0003	-	-	-	-	0.0012	0.0008	-
Dectime eff.: kin. weighting	-	-	-	-	-	-	0.0002	-	-
Dectime eff.: p.d.f. weighting	-	-	-	-	-	-	0.0001	0.0001	-
Dectime eff.: $\Delta \Gamma_s = 0$ sim.	0.0001	0.0002	-	-	-	-	0.0003	0.0005	-
Length scale	-	-	-	-	-	-	-	-	0.004
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.10	0.037	0.0015	0.0026	0.018

Source	$\Gamma_{\rm H} - \Gamma_{B^0}$	$ \lambda $	ϕ_{s}	
	$[{\rm fs}^{-1}]$	$[\times 10^{-3}]$	[mrad]	
t acceptance	2.0	0.0	0.3	
$ au_{B^0}$	0.2	0.5	0.0	
Efficiency $(m_{\pi\pi}, \Omega)$	0.2	0.1	0.0	
t resolution width	0.0	4.3	4.0	
t resolution mean	0.3	1.2	0.3	1) Itilizzo dei W/S rinesati nel fit
Background	3.0	2.7	0.6-	2) Variazione del numero di eventi di fondo
Flavour tagging	0.0	2.2	2.3	entro $\pm 1\sigma$
Δm_s	0.3	4.6	2.5	
$\Gamma_{ m L}$	0.3	0.4	0.4	
B_c^+	0.5	-	-	
Resonance parameters	0.6	1.9	0.8	1) Variazione dei fattori di Barriera
Resonance modelling	0.5	28.9	9.0	2) Utilizzo di $f_0(500)$ al posto del NR
Production asymmetry	0.3	0.6	3.4	3) Soluzione II
Total	3.8	29.9	11.0	4) Aggiunta di $\rho(770)$

Table 5: Fit results of the resonant structure for both Solutions I and II. These results do not supersede those in Ref. [21] for the resonant fractions.

		Component	Fit fractions (%)	Transve: 0	rsity fracti	ions (%)	• P_B momento della J/ψ nel sistema a riposo (SAR) del B_s ;
			Solutio	on I			• P_R momento di h^{\mp} nel SAR di R;
Flatté		$f_0(980)$	60.09 ± 1.48	100	_	_	
	ſ	$f_0(1500)$	8.88 ± 0.87	100	_	_	• m_B massa del B_s ;
		$f_0(1790)$	1.72 ± 0.29	100	_	_	• m_0 valore centrale della massa di R;
Breit-Wigner		$f_2(1270)$	3.24 ± 0.48	13 ± 3	37 ± 9	50 ± 10	
		$f_2'(1525)$	1.23 ± 0.86	40 ± 13	31 ± 14	29 ± 25	• L_B momento angolare tra J/ψ e R;
	Ĺ	NR	2.64 ± 0.73	100	_	_	• L_R spin di R (momento angolare di
			Solutio	n II			$\pi\pi$).
		$f_0(980)$	93.05 ± 1.12	100	_	_	
		$f_0(1500)$	6.47 ± 0.41	100	_	_	
		$f_0(1710)$	0.74 ± 0.11	100	_	_	
		$f_2(1270)$	3.22 ± 0.44	17 ± 4	30 ± 8	53 ± 10	
		$f_2'(1525)$	1.44 ± 0.36	35 ± 8	31 ± 12	34 ± 17	
		NR	8.13 ± 0.79	100	_	_	

Contributi di ordine successivo (pinguino)

Con l'aumento della precisione è fondamentale studiare i contributi a pinguino!

- Assumendo la simmetria di sapore SU(3) possiamo valutare la grandezza di tali contributi usando transizioni b→ccd (con scambio di quark spettatori s-d) dove non sono soppressi
- $SU(3)_F: B^0_s \to J/\psi K^{*0}$ and $B^0 \to J/\psi \rho^0$ sono transizioni b \to ccd.

$$\Delta \phi_{s,0}^{J/\psi \phi} = 0.000^{+0.009}_{-0.011} \text{ (stat)} \quad {}^{+0.004}_{-0.009} \text{ (syst) rad}$$
$$\Delta \phi_{s,\parallel}^{J/\psi \phi} = 0.001^{+0.010}_{-0.014} \text{ (stat)} \pm 0.008 \text{ (syst) rad}$$
$$\Delta \phi_{s,\perp}^{J/\psi \phi} = 0.003^{+0.010}_{-0.014} \text{ (stat)} \pm 0.008 \text{ (syst) rad}$$

Precisione del ~10 mrad ---- Da comparare con la precisione attuale HFLAV di 21 mrad

Tali contributi sono trascurabili per ora ma non troppo diversi dall'accuratezza di ϕ_s quindi con l'aumento della luminosità (e della precisione) sarà cruciale ottenere predizioni di ϕ_s che includono anche i contributi puinguino.