

Tokai to Kamioka long-baseline neutrino oscillation

New TPC for the ND280 detector in T2K experiment

M. Cicerchia for T2K Collaboration

cicerchia@Inl.infn.it

Outline

- T2K: an experiment to study the neutrino oscillations
- T2K detectors upgrade
 - New HA-TPC
 - Test on prototype

Tokai to Kamioka long-baseline neutrino oscillation

NEUTRINOS

and **detected** by:

TZK From v-oscillation study to leptonic CP violation observation

3

First observation of the oscillation: $v_{\mu} \rightarrow v_e$ with a significance of 7.3 σ

[K. Abe et al., Phys Rev Lett 112 (2014) 061802.]

The study of **neutrino and anti-neutrino oscillations** under the same conditions shed light on **matter anti-matter asymmetry** in the universe.

 ν_e flux / ν_{μ} flux => accessible observation of LEPTONIC CP VIOLATION.

"Our results indicate <u>CP</u> <u>violation in leptons</u> and our method enables sensitive searches for matter–antimatter asymmetry in neutrino oscillations using acceleratorproduced neutrino beams."

	1e0de v-mode	1e0de v-mode	1e1de v-mode
$\nu_{\mu} \rightarrow \nu_{e}$	59.0	3.0	5.4
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	0.4	7.5	0.0
Background	13.8	6.4	1.5
Total predicted	73.2	16.9	6.9
Systematic uncertainty	8.8%	7.1%	18.4%
Data	75	15	15

[K. Abe et al. (T2K Collaboration), Nature 580 (2020) 339-344]

M. Cicerchia – 106° Congresso SIF – 14-18 September 2020

TZK Upgrade to get a better sensitivity (3σ)

- Deliverable maximum neutrino beam (POT events up to 20×10²¹)
- <u>NEAR DETECTOR (ND280)</u> better handling of systematic errors: ~3% for the systematic uncertainties affecting the CP violation measurement [A. Blondel et al T2K Collaboration, "The T2K-ND280 upgrade proposal", CERN-SPSC-2018-001; SPSC-P-357]
- Super-kamiokande (water doped with Gd)

- high granularity SuperFGD (Active Target)
- 2 horizontal TPCs with thin field cage
- Resistive Micromegas (innovative gas amplifiers)

Innovative feature of ND280 \rightarrow Efficient measurement of charged particles in an unknown kinematic region. Magnetic field \rightarrow increases the T2K sensitivity to the matter anti-matter asymmetry

To keep $\frac{\Delta E_{\perp}}{E_{\parallel}} \le 10^{-4}$ confined at < 1.5 cm from FC walls, the TPC cage requirements are:

- Cathode flatness better than 0.1 mm
- Micromegas detector flatness better than 0.2 mm
- Cathode/Anode planes parallel to within 0.2 mm
- Field Cage walls flatness better than 0.3mm
- Voltage divider resistors matched within rms $\simeq 0.1\%$

TZR ND280 Upgrade: HA-TPC – 1st FC prototype at LNL

Field Cage

- produced by NEXUS
- assembled & tested at LNL: Resistors are soldered and tested; Cathode plane is mounted; Gas system is assembled, and gas tightness id tested.

Now the prototype is testing at CERN with Cosmic Rays

<u>HV cathode tests</u> \rightarrow stable up to -18kV

Gas tightness:

- T2K gas mixture {Ar:CF₄:iC₄H₁₀ (95:3:2)} flux = 50l/h
- O₂ contamin < 35ppm
- Water dewp T = -25°C

Reference experimental test conditions

- sampling frequency 25MHz
- trigger = combination of signals from: CRT; small scintillator PMT; pulser.

TPC tested with Cosmic Rays:

- tracks at edges;
- tracks at small theta angle;
- scan DLC voltage;
- scan shaping time;
- scan +HV applied to 2nd strip at anode (mesh plane is located at 4th strip)
- triggering on spikes of divider current (AC pick-up)

<u>TZK</u> <u>1st TPC prototype: test with X-rays source</u>

1st prototype tests led to fix the issues and to optimize the construction and assembling procedure; will be tested with e-beam at DESY (October 2020)

2nd prototype is under construction (ready in November 2020)

HA-TPC \rightarrow start production early 2021

ightarrow assembly in ND280 at Tokai (2022)

End of 2022 \rightarrow start new measurements of v-oscillation

Thank you for the attention!

