

Measurement of ${}^{3}\overline{\text{He}}$ absorption cross-section with ALICE

<u>P. Larionov^{1,2}</u>, on behalf of the ALICE collaboration ¹Laboratori Nazionali di Frascati - INFN

pavel.larionov@cern.ch

106° Congresso Nazionale della Società Italiana di Fisica

²CERN

Introduction and motivation

- Cosmic ray antinuclei unique Dark Matter probe
- Antinuclei flux currently being measured by satellite and balloon-borne experiments
- No data for ${}^{3}\overline{\text{He}}$ inelastic cross section. It has never been measured!

Figure by L. Šerkšnytė

• Inelastic processes during propagation of antinuclei in space → crucial to determine signal and background correctly

P. Larionov - 106° Congresso Nazionale della Società Italiana di Fisica

Antimatter production at the LHC

- High energy collisions at LHC = the most suitable environment to produce and study light (anti)nuclei
- At LHC energies matter and antimatter are produced in almost equal amounts \rightarrow both ³He and ³He are produced and propagate through detector material
- The (anti)nuclei get absorbed inside the detector → in ALICE we are in a unique position to quantify it!

Antimatter production at the LHC

[1] S. Acharya et. al., PHYS. REV. C 97, 024615 (2018)

- High energy collisions at LHC = the most suitable environment to produce and study light (anti)nuclei
- At LHC energies matter and antimatter are produced in almost equal amounts \rightarrow both ³He and ³He are produced and propagate through detector material
- The (anti)nuclei get absorbed inside the detector → in ALICE we are in a unique position to quantify it!

Absorption of produced (anti)matter inside the detector material:

- Beam pipe (~ $0.3\% X_0$)
- ITS (~ 8% X₀)
- TPC (~ 4% X₀)
- TRD (~ 25% X₀)
- Space frame (~ 20% X₀) between TPC and TOF detectors

Idea: use raw reconstructed antiparticle to particle ratios:

- No correction due to detection efficiency or absorption
- Correction for secondary (anti-)particles from weak decays or spallation processes
- Raw reconstructed ${}^{3}\overline{\text{He}}/{}^{3}\text{He}$ ratio is sensitive to $\sigma_{\text{INEL}}({}^{3}\overline{\text{He}})$
- Constrain $\sigma_{\text{INEL}}({}^{3}\overline{\text{He}})$ via comparison with dedicated MC simulation (Geant4)

- ALICE has successfully measured low-energy $\sigma_{\text{INEL}}(\overline{d})$: arXiv:2005.11122
- This talk \rightarrow measurement of $\sigma_{\text{INEL}}(^{3}\overline{\text{He}})$ in high multiplicity pp collisions at 13 TeV with ALICE

Detectors used in the analysis

P. Larionov - 106° Congresso Nazionale della Società Italiana di Fisica

Raw primordial ${}^{3}\overline{He}/{}^{3}He$ ratio

ALI-PREL-347219

- Raw primordial ${}^{3}\overline{\mathrm{He}}/{}^{3}\mathrm{He}$ ratio: larger absorption of antiparticles, especially at low momentum
- Dedicated Monte Carlo simulation with varied hadronic inelastic cross-section of ${}^{3}\overline{He}$: ± 50% w.r.t. the default in Geant4
- Vary the $\sigma_{\rm INEL}({}^3{\rm He})$ in Monte Carlo to reach the $\pm 1\sigma^*$ and $\pm 2\sigma$ experimental limits in data
- The variation corresponds to $\pm 1\sigma$ and $\pm 2\sigma$ constraints on the ${}^{3}\overline{\mathrm{He}}$ inelastic cross section

 $^{*}\sigma$ includes statistical, systematic and global uncertainties

Results: ${}^{3}\overline{\text{He}}$ inelastic cross-section

Results: ${}^{3}\overline{\text{He}}$ inelastic cross-section

ITS-TPC-TOF

 $\sigma_{\rm INEL}({}^{3}\overline{\rm He})$ at high momentum: good agreement with Geant4

- First measurement of ${}^{3}\overline{\text{He}}$ inelastic cross-section using raw primordial antiparticle to particle ratio
- Dedicated Monte Carlo simulations to extract the constrains on $\sigma_{\rm INFL}({}^{3}\overline{\rm He})$
- $\sigma_{\text{INEL}}(^{3}\overline{\text{He}})$ shows steeper rise towards lower momentum w.r.t Geant4 and good agreement at momenta > 1.5 GeV/c
- Crucial input for the propagation of antinuclei in space and eventual determination of mean free path of ${}^{3}\overline{\mathrm{He}}$ how far can we observe the antinuclei candidates in the Universe?

Thank you for your attention!