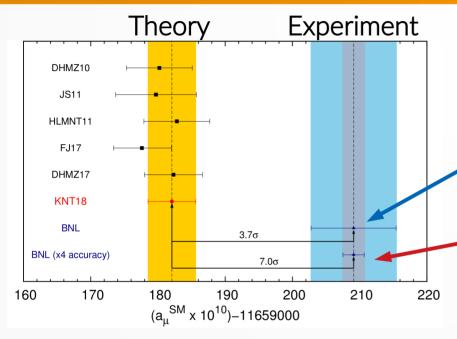
Modelization of multiple scattering effects for the MUonE experiment

Riccardo Nunzio Pilato Università di Pisa and INFN Pisa

Contacts: riccardonunzio.pilato@phd.unipi.it

106° Congresso Nazionale SIF 14-18 Settembre 2020


Outline

- The MUonE experiment:
 - Motivation: the hadronic contribution to the muon g-2.
 - Experimental apparatus.
- Multiple Scattering effects:
 - Results of Test Beam 2017.
 - Modelization of Multiple Scattering.
 - Required accuracy.
- Conclusions.

Motivation: the muon g-2 and the hadronic contribution

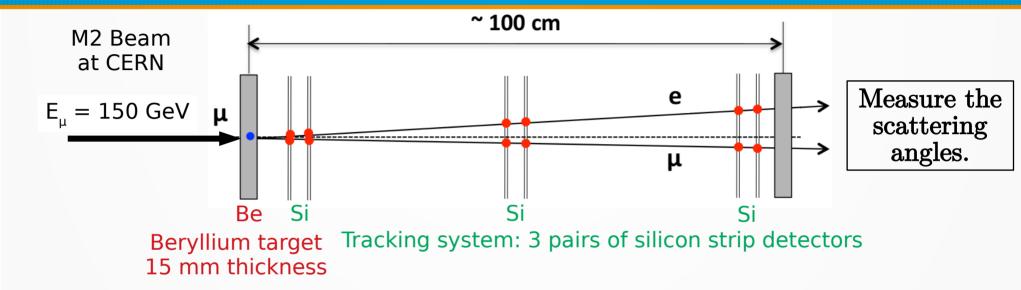
The SM prediction is limited by the hadronic contribution $a_{_{\prime\prime}}^{^{}HLO}$.

$$a_{\mu}^{HLO} = (693.1 \pm 4.0) \times 10^{-10}$$

$$\delta a_{\mu}^{HLO} \sim 0.6\%$$

Latest measurement of a_{μ} (BNL) Accuracy: 540 ppb. 3.7 σ discrepancy with SM.

New experiment at Fermilab.


Aimed accuracy: 140 ppb.

The MuonE collaboration aims at measuring $a_{\mu}^{\;\;HLO}$ proposing a novel approach: measure $\Delta\alpha_{\rm had}$ in the space-like region, via $\mu\text{-}e$ elastic scattering.

[see talk by U. Marconi]

The MUonE experiment

40 stations + 3 years of data taking:

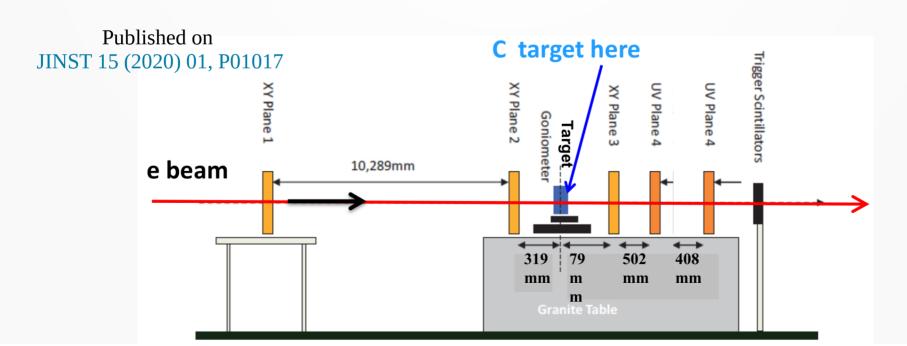
Statistical accuracy on $a_{_{\prime\prime}}^{_{HLO}}$: 0.3%

Main challenge: reach a comparable systematic accuracy.

uncertair

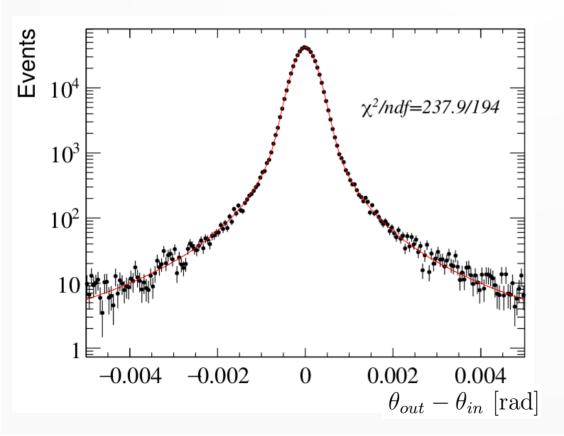
Systematic uncertainty of 10 ppm in the low θ_e region.

Multiple scattering represents one of the main systematic effects.


Test Beam 2017

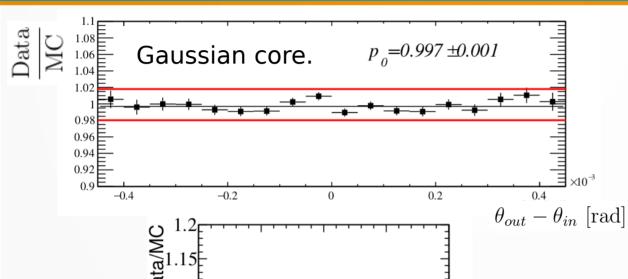
Multiple scattering effects of electrons with 12 and 20 GeV on Carbon targets (8 and 20 mm).

Main goals:

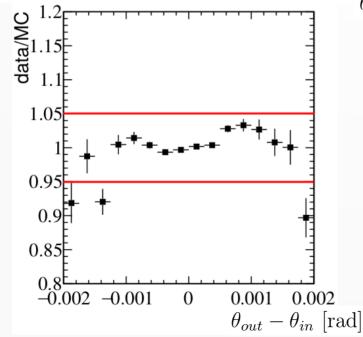

 Compare data with a GEANT4 simulation of the apparatus. Determine a parameterization able to describe also the non Gaussian tails.

Results from TB2017

$$f_e(\delta\theta_e^x) = N \left[(1-a) \frac{1}{\sqrt{2\pi}\sigma_G} e^{-\frac{(\delta\theta_e^x - \mu)^2}{2\sigma_G^2}} + a \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\sigma_T \Gamma(\frac{\nu}{2})} \left(1 + \frac{(\delta\theta_e^x - \mu)^2}{\nu\sigma_T^2} \right)^{-\frac{\nu+1}{2}} \right]$$

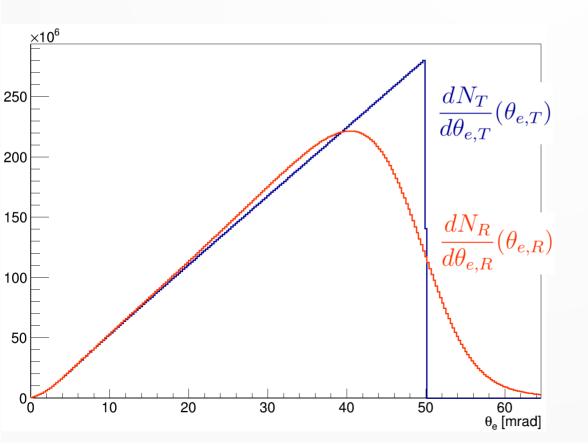


$$\vec{p} = [N, a, \mu, \sigma_G, \nu, \sigma_T]$$


Gaus + Student
parameterization fits well the
multiple scattering
distribution. It allows to model
also the non Gaussian tails.

Results from TB2017

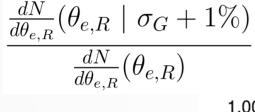
Results show also a ~1% agreement between data and MC for the Gaussian core.



Agreement between data and MC is up to 10% in the tails, but with large statistical fluctuations.

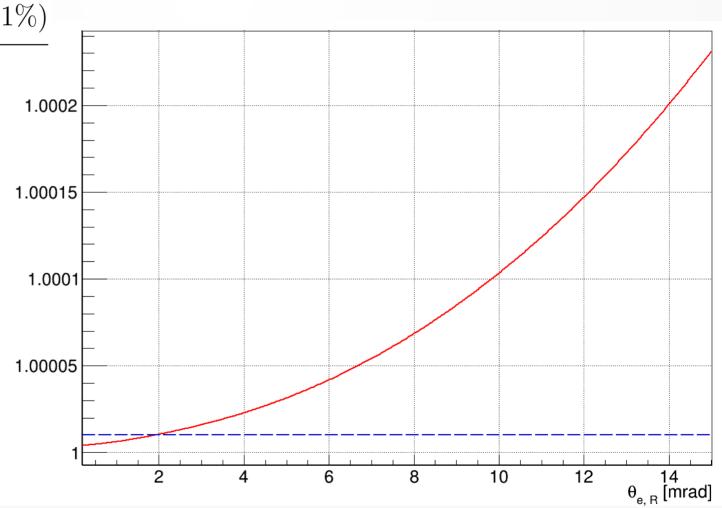
Modelization of MS effects on the distribution of θ_{α}

$$\frac{dN_R}{d\theta_{e,R}}(\theta_{e,R}) = \int \frac{dN_T}{d\theta_{e,T}}(\theta_{e,T}) \left(g(\theta_{e,R}, \theta_{e,T}) \right) d\theta_{e,T}$$



Multiple scattering effects modeled as Gaus + Student

Geant4 simulation of the apparatus exploited to parameterize multiple scattering effects as a function of θ_e .


Effect of a 1% systematic error on the Gaussian core

 $\begin{array}{l} 1\% \text{ systematic} \\ \text{ error on } \sigma_{\text{G}} \text{ has an} \\ \text{ effect of 10ppm at} \\ \text{ low angles} \\ (\theta_{\text{eR}} < 2 \text{ mrad}). \end{array}$

Meets the requirements of MUonE

Conclusions

- Control of multiple scattering effects plays an important role in the MUonE experiment.
- Test Beam 2017: multiple scattering of 12 and 20 GeV electrons on C target. An agreement of ~1% is found between data and MC for the Gaussian core. A Gaus+Student parameterization fits well the multiple scattering distribution.
- A precision of 1% on the Gaussian core of the multiple scattering distribution is sufficient to keep this systematic effect within the requirement of 10 ppm.