Initial State Interaction study for the ²⁰Ne+⁷⁶Ge nuclear reactions at 306 MeV

Alessandro Spatafora per la collaborazione NUMEN

Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud

14-18 Settembre 2020

Neutrino: Dirac o Majorana? Nuclear Matrix Elements Progetto NUMEN

Neutrino: Dirac o Majorana?

Experimentum crucis!

$$2\nu\beta\beta$$

Dentro il Modello Standard

•
$$T_{1/2}$$
 da $10^{19} - 10^{21}$ y

$$\mathbf{D}
uetaeta$$

$$^{A}_{Z}A_{N}
ightarrow {}^{A}_{Z\mp 2}B_{N\pm 2} + 2e^{\pm}$$

Oltre il Modello Standard

Mai osservato!

$$T_{1/2}^{0\nu}]^{-1} = G_{0\nu} |M_{0\nu}|^2 |f(m_i, U_{ei}, \xi_i)|^2$$

Neutrino: Dirac o Majorana? Nuclear Matrix Elements Progetto NUMEN

Nuclear Matrix Elements (NME)

$\mathbf{0} uetaeta$ - NME

$$M_{\mathbf{0}\nu} = \langle \phi_f | \hat{O}^{\mathbf{0}\nu\beta\beta} | \phi_i \rangle$$

- Interazione debole
- Accesso teorico: QRPA, Large scale shell model, IBM, EDF . . .

DCE - NME

$$M_{DCE} = \langle \boldsymbol{\chi_\beta} | \hat{O}^{DCE} | \boldsymbol{\chi_\alpha} \rangle$$

- Interazione forte
- Accesso sperimentale: (π⁺, π⁻), single charge exchange, electron capture, transfer... double charge exchange heavy ions nuclear reactions (DCE)
- Progetto NUMEN:

$$\frac{d\sigma_{\alpha\beta}}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^{2})^{2}} \left(\frac{k_{\alpha}}{k_{\beta}}\right) \left|M_{\alpha\beta}(\mathbf{k}_{\alpha},\mathbf{k}_{\beta})\right|^{2}$$

- Funzioni d'onda nucleari uguali
- Struttura matematica degli operatori simile
- Meccanismo di reazione: Initial e Final State Interaction

Neutrino: Dirac o Majorana? Nuclear Matrix Elements Progetto NUMEN

Progetto NUMEN

F. Cappuzzello et al., EPJ A 54(2018) 72

- Fase I : Esperimento Pilota ⁴⁰Ca (¹⁸O,¹⁸Ne)⁴⁰Ar
 - F. Cappuzzello et al., EPJ A 51(2015) 145

Fase II :

Campagna sperimentale [S. Calabrese (invited talk Venerdi 18 Settembre)]:

Bersagli: ¹²⁰Sn, ¹¹⁶Cd, ¹³⁰Te, ⁷⁶Ge, ⁷⁶Se, ⁴⁸Ti, ¹²C Reazioni:

- DCE e SCE
- trasfer di nucleoni [l. Ciraldo (talk n. 763)]
- scattering elastico ed inelastico
- Ricerca e sviluppo [G. A. Brischetto (talk n. 786)][V. Capirossi (talk n. 734)] [D. Sartirana (talk n. 795)]
- Fase III : Aggiornamento dell'apparato sperimentale: in corso!
- Fase IV : Campagna sperimentale con fascio ad alta intensità

Esperimento e riduzione dei dati

Setup sperimentale Risultati sperimentali

Setup sperimentale

Catania. LNS-INFN

■ Fascio di ²⁰Ne¹⁰⁺ dal Ciclotrone Superconduttore K800 a 306 MeV

■ Bersaglio di ⁷⁶Ge da 390±20 $\mu g/cm^2$

Setting angolari $\theta_{OPT} = 8^{\circ}, 13^{\circ}, 16^{\circ}, 19^{\circ}$ $3^\circ < \theta_{IAB} < 25^\circ$

Spettrometro magnetico MAGNEX F. Cappuzzello et al., EPJ A 52 (2016) 167

Proprietà Ottiche	Valori Attuali
Rigidità Magnetica	1.8 Tm
Angolo solido coperto	50 msr
Accettanza angolare orizzontale	-90, $+110$ mrad
Accettanza angolare verticale	—123, +123 mrad
Accettanza in impulso	-0.14%, +0.1%
Dispersione in impulso	3.68 cm/%

Rivelatore piano focale M.Cavallaro et al. EPJA 48(2012) 59

- 6 camere a drift e proporzionali sensibili alla posizione e all'energia persa dagli eiettili
- 224 pad ad induzione sopra ciascuno dei 6 fili
- 60 rivelatori al silicio

- Tracciamento degli eiettili $(X_{foc}, \theta_{foc}, Y_{foc}, \phi_{foc})$
- 2 Identificazione delle particelle $(\Delta E, E_{resid})$

Setup sperimentale Riduzione dei dati Risultati sperimentali

Riduzione dei dati

Setup sperimentale Riduzione dei dati Risultati sperimentali

Risultati sperimentali

Potenziale ottico CC vs DWBA

Scelta del potenziale ottico

Potenziale ottico

- Potenziale parametrico di Akyuz-Winther
- Potenziali di double folding:
 - dfol Potential
 - Saõ Paolo Potential

σ_R	J_V	J_W	$\sqrt{\langle R_V^2 \rangle}$	$\sqrt{\langle R_W^2 \rangle}$
(<i>mb</i>)	(MeV fm ³)	(MeV fm ³)	(fm)	(fm)
AW 2807	-88	-66	7.03	7.03
DFOL2819	-437	-322	5.30	5.18
SPP 2799	-342	-256	5.32	5.32

A. Spatafora et al. PRC 100 (2019) 034620

Potenziale ottico CC vs DWBA

CC vs DWBA

Alessandro Spatafora 106° Congresso Nazionale - Società Italiana Fisica

Conclusioni

- Ottima risoluzione energetica ed angolare!
- I calcoli in DWBA non descrivono i dati oltre l'angolo di grazing.
- L'accoppiamento con i primi stati eccitati 2⁺ è cruciale!

Lo scattering elastico ed inelastico è uno strumento fondamentale per la piena descrizione del meccanismo di reazione di DCE e per le deduzioni sui NME di $0\nu\beta\beta$.

