Studies of a K⁻ single nucleon absorption processes by AMADEUS

Magdalena Skurzok*

On the behalf of the AMADEUS collaboration

Jagiellonian University in Krakow

Istituto Nazionale di Fisica Nucleare

Motivation & Scientific Case

The investigation of the **in-medium modification of the KN interaction** is of **fundamental** for the low-energy QCD in the non perturbative regime.

Chiral perturbation theory (ChPT): effective field theory where mesons and baryons represent the effective degrees of freedom instead of the fundamental quark and gluon fields.

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

- The chiral symmetry is **spontaneously broken** → the existence of massless and spinless Nambu-Goldstone bosons which are identified with the pions. Explicitly broken by **q** masses.
- Very successful in describing the πN , $\pi \pi$ and NN interactions in the low-energy regime and is considered as the theory of the low-energy strong interaction in the SU(2) flavour sector.

The extension of the theory to the sector with the <u>quark s</u> turns out to be more problematic since it is not directly applicable to the \overline{KN} channel.

The χ PT is not applicable to the $\overline{K}N$ channel due to the emerging of the $\Lambda(1405)$ and the $\Sigma(1385)$ resonances just below the $\overline{K}N$ mass threshold

Λ(1405) I=0 $J^{P} = \frac{1}{2}^{-1}$ M = (1405.1^{+1.3}) MeV Γ = (50.5 ± 2.0) MeV decay modes: Σπ (I=0) 100%

Σ(1385) I=1 $J^{P} = 3/2^{+}$ decay modes: $\Lambda \pi$ (I=1) (87.0 ± 1.5) % $\Sigma \pi$ (I=1) (11.7 ± 1.5) %

Possible solutions:

- Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
- \succ Phenomenological $\overline{K}N$ and NN potentials

The parameters of the models are constrained by the existing scattering data

The controversial nature of the Λ(1405) and kaonic bound states

DAΦNE

- $\phi \rightarrow K^{-} K^{+} (49.2\%), \approx 1000 \phi/s$
- monochromatic low momentum Kaons ≈127 Mev/c
- back to back K⁻ K⁺ topology
- small hadronic background due to the beam

KLOE

Cilindrical DC with 4π geometry & electromagnetic calormeter 96% acceptance high efficiency and resolution for charged and neutral particles exclusive measurement of the considered AT-REST IN-FLIGHT K⁻ absorbed from atomic orbitals (p. ~ 100 MeV/c) (p, ~ 0 MeV/c) p.~ 100 MeV/c

AMADEUS: KLOE 2004-2005 dataset analysis ($\mathcal{L} = 1.74 \text{ pb-1}$)

Possibility to use KLOE materials as an active target

- DC wall (750 µm C foil, 150 µm Al foil);
- DC gas (90% He, 10% C₄H₁₀).

<u>Λπ⁻ analysis</u>: K⁻n non-resonant transition amplitude

K⁻n scattering amplitude with Chiral models

J. Hrtankova, J. Mares, Phys. Rev. C96, 015205 (2017) A. Cieply et al, Nycl. Phys. A 954, 17 (2016) The detailed characterisation of the yield and spectral shape of the non-resonant \overline{KN} absorption is fundamental reference to extract the Λ (1405) properties in \overline{KN} absorption experiments

Investigated using: K^{-} "n" ³He $\rightarrow \Lambda \pi^{-}$ ³He (33±6) MeV below KN threshold $~E_{
m Kn}\sim -B_n-<rac{p_{\Lambda\pi}^2}{2\mu_{\pi\Lambda,3
m He}}>$

K. Piscicchia, et. al., Phys. Lett. B782, 339 (2018) K. Piscicchia, S. Wycech, C. Curceanu, Nucl. Phys. A 954, 75 (2016)

Ratio/vield

σstat.

 σ_{syst}

0.9

$Σ^0 π^0 / \Lambda^0 π^0$ analysis

Motivation:

1) The available data for the inelastic $K^{\text{-}}\,p\to\Sigma^0\,\pi^0$ cross section close to threshold:

- three points in the p_k=120-200 MeV/c range (bubble chamber experiments),
- uncertainties larger than 30%,
- the $K^- p \rightarrow \Sigma^0 \pi^0$ cross sections are obtained **not directly but** on the basis of the isospin symmetry argument, from the measurement of $K^- p \rightarrow \Lambda \pi^0$ events

Low momentum K⁻ scattering cross sections in this Isospin I = 0 channel represent a fundamental input for the non-perturbative low energy QCD models

PRELIMINARY

