The Cosmic Ray Tagger of the SBN Far Detector at Fermilab

> Francesco Poppi PhD student University of Bologna and INFN Bologna

> > 106° Congresso Nazionale Società Italiana di Fisica

Persisting neutrino anomalies

 \bar{v}_e appearance from \bar{v}_{μ} beam in LSND experiment, 3.8 σ CL.

 v_e disappearance by SAGE, GALLEX experiments during their calibration with Mega-Curie sources, with observed/predicted ratio of $R = 0.84 \pm 0.05$.

 $\bar{\nu}_e$ disappearance of near-by nuclear reactor experiments with $R = 0.934 \pm 0.024$.

Neutrino-4 experiment observed an oscillating pattern at 3.5 σ CL with a possible interpretation as sterile neutrino - $\bar{\nu}_e$ oscillation with ~ev² Δm^2 .

New result -> https://arxiv.org/abs/2003.03199

Short-Baseline https://arxiv.org/abs/1503.01520 Neutrino Program at Fermilab

Three liquid argon TPCs along the BNB studying both appearance $(\nu_{\mu} \rightarrow \nu_{e})$ and disappearance $(\nu_{\mu} \rightarrow \nu_{\mu})$ channels. 3 years of data taking (6.6 10^{20} POT) will allow to confirm or definetly rule out the light sterile neutrino hypothesis.

Detector	Distance from BNB target	Active LAr Mass
SBND	110 m	112 t
MicroBooNE	470 m	87 t
ICARUS	600 m	476 t

Off axis NuMI v_{μ}/\bar{v}_{ν}

 $< E_{\nu} > \sim 2 \text{ GeV}$

Francesco Poppi - University of Bologna - 106° Congresso Nazionale Società italiana di Fisica

On axis BNB v_{μ}/\bar{v}_{μ}

 $< E_{\nu} > \sim 700 \text{ MeV}$

Cosmic Ray induced Background

- ~11 kHz trigger rate due to cosmic ray.
- ~11 cosmic ray µ in the detector volume in a 1 ms long time window of the TPC readout.
- Background to v_eCC events from γ induced by cosmic ray muons through/near the TPC.

Cosmic Ray Tagger (CRT): 4π coverage of the LAr-TPC.

Top CRT:

123 modules, 80% cosmic µ tagging.

Top Cosmic Ray Tagging module

- Hodoscope module consisting of 2 orthogonal layers of eight 23 cm wide scintillator bars each, encased in 1.86 x 1.86 m² Al boxes.
- Scintillation light is collected by two WLS fibres per bar each readout at one end by one SiPM.

Trigger

• SiPM threshold = 1.5. p.e.

Position information (on the 23 x 23 cm² hodoscope grid) and timing information (with a ~2 ns resolution) for cosmic rays tagging purpose.

Scintillators Light Yield

- Modules were tested in terms of light yield in dedicated cosmic ray runs.
- Light yield for m.i.p. are obtained from the integrated charge spectrum of each channel.

 $LY = \frac{MPV - Ped}{1 \ p. e.}$

- Preliminary results are:
 - 6 p.e. for 10 mm bars;
 - 20 p.e. for 15 mm bars.

Francesco Poppi - University of Bologna - 106° Congresso Nazionale Società italiana di Fisica

000

Hodoscope Efficiency

- Test Stand setup.
- External trigger: coincidence of top and bottom modules.
- Efficiency evaluated as the fraction of the external trigger in coincidence with a trigger from the module under test.

Average CRT module efficiency is 96.0%, in compliance with the experiment requirements.

Conclusions

- 125 Top CRT modules were built and tested at the Frascati National Laboratories (LNF) with a joint effort of INFN and CERN.
- Timing resolution of the CRT modules: $\sigma = 2$ ns.
- Light yield measurements for m.i.p. : 6 (20) photoelectrons for the 10 (15) mm thick scintillator bars.
- The average module efficiency is 96%, in **compliance** with the experiment requirements.
- Currently the modules are at CERN, on their way to FNAL.
- Installation on the top of ICARUS detector was expected this fall, but postponed due to COVID-19 pandemic.
- The SBN program will begin taking data by the end of 2020.

SBN Program						
SBN Proposal	SBN ICARUS roposal @FNAL		CRT LNF -> @CERN -> FNAL		SBN Program	X
2015	2017	2018	2019	2020	2021	10