CAPIROSSI VITTORIA, POLITECNICO DI TORINO E INFN-TORINO

CHARACTERIZATION OF FIRST PROTOTYPES OF THIN TARGETS FOR THE NUMEN EXPERIMENT

HOW TO DESIGN AND CHARACTERIZE A TARGET THAT MUST BE THIN, UNIFORM AND COOLED DOWN?

POLITECNICO DI TORINO

The NUMEN Experiment, based in LNS-INFN Laboratories in Catania, aims to measure the cross sections of Double Charge Exchange (DCE) reactions

These measurements can help the Neutrinoless Double Beta Decay $(0\nu\beta\beta)$ experiments to evaluate the Nuclear Matrix Element of the decay

DCE	Ονββ
¹¹⁶ Sn(¹⁸ O, ¹⁸ Ne) ¹¹⁶ Cd	/
⁷⁶ Se(¹⁸ O, ¹⁸ Ne) ⁷⁶ Ge	/
¹¹⁶ Cd(²⁰ Ne, ²⁰ O) ¹¹⁶ Sn	¹¹⁶ Cd→ ¹¹⁶ Sn+2e ⁻
¹³⁰ Te(²⁰ Ne, ²⁰ O) ¹³⁰ Xe	¹³⁰ Te→ ¹³⁰ Xe+2e+
⁷⁶ Ge(²⁰ Ne, ²⁰ O) ⁷⁶ Se	⁷⁶ Ge→ ⁷⁶ Se+2e-

le i

Target thickness uniformity allows accurate knowledge of the thickness crossed by the beam Low target thickness makes negligible effects (straggling and dispersion) on the energy resolution of the products

The temperature at the target center is largely above the melting point*: a standalone target can not be used, an efficient target cooling is needed

> *Verified by solving the heat equation, analytically (in the stationary state) and numerically (time-dependent solution)

106° CONGRESSO SIF

How to cool the target?

5 μm of Highly Oriented Pyrolytic Graphite (HOPG) as substrate

Target deposition (by Electron-Beam Physical Vapor Deposition) of a few hundreds of nm

It works!*

This cooling system, thanks to the high in-plane thermal conductivity of HOPG (1950 W/(m*K)), is able to **quickly transfer the heat out of the target**

* The heat equation evaluated for a target on a HOPG substrate has been solved numerically (time-dependent solution). If the extremities of HOPG and target are maintained at 100K, the temperatures of the targets center are below the melting points (except for Se).

Target thickness and uniformity are crucial for energy resolution

DCE reactions are detected by measuring the energy of the ejectile and the relaxation energy (through gamma emission) of the target isotope. The ejectile **energy resolution must be good enough** to clearly identify DCE.

The target thickness and its uniformity affects the ejectile energy, because of the energy **straggling** and **dispersion** effects.

Straggling: Statistical fluctuations on the energy loss (consequently, on the thickness evaluation) due to non-linear trajectories inside the target

ep

Dispersion: The DCE reaction point of the projectile is **assumed** in the center \rightarrow uncertainties on the energy of the ejectile and its energy loss in target (dispersion)

Both in HOPG and target Proportional to thickness

Only in target
Proportional to thickness

The target has to be thin and as uniform as possible

Analysis of the target planar dimensions by Field Emission Scanning Electron Microscopy (FESEM)

Temperature substrate $\simeq 403K$ • Chromium buffer

CAPIROSSI VITTORIA STEP 5/8

106° CONGRESSO SIF

How target thickness and uniformity can be evaluated? Alpha spectroscopy

is the best technique

Low energy ion beam techniques are non-destructive tools to evaluate thicknesses, through the measurement of the energy loss by the beam

We've built this set-up in Politecnico of Turin

We have performed RBS measurements at AN2000 accelerator, in INFN laboratories of Legnaro

Alpha-Particle Transmission

Rutherford Backscattering

Finally, Thickness uniformity results

step

		Thickness		Thickness uniformity	
		α transmission	RBS	Disagreement %	$lpha$ transmission (σ %)
c	B6	235 µg/cm²	194 μg/cm²	17%	28%
N	A19	175 µg/cm²	178 µg/cm²	1,7%	29%
e	B1	472 μg/cm ²	480 μg/cm ²	1,6%	17%
	A7	436 μg/cm²	442 μg/cm ²	1,4%	17%

The alpha spectroscopy technique is efficient to evaluate the target non-uniformity

A Monte Carlo code has been written to simulate the energy distribution of DCE ejectile and evaluate the energy resolution.

 → Contributions to the ejectile energy distribution from NUMEN spectrometer, cyclotron, HOPG and target
→ Input of experimental data of thickness and non-uniformity of HOPG and target
→ Same branching ratio for

ground state, first or second excited level of the target isotope

At the state of art, Tin and Tellurium targets non-uniformity allow to distinguish the ground state from the excited levels of the target daughter, not between ground state and first excited level

All the steps to have a thin, uniform and cooled down target

The NUMEN Experiment aims to measure the cross sections of DCE reactions. To have good energy resolution, the target must be thin and uniform. Since DCE are rare, very intense ion beams are required. They heat and can damage the target, that must be cooled down.

The target isotope (hundreds of nm) is deposited on a HOPG substrate to quickly transfer the heat outside the central zone.

An alpha-particle transmission set-up has been designed and tested by RBS measurements. It can quantitatively measure thickness of thin targets, but also its thickness uniformity.

First prototypes of the NUMEN target system have been produced and studied with alpha transmission, deducing the target thickness uniformity. This values have been used in a MonteCarlo simulation to evaluate the effects of the target on the NUMEN energy resolution.

At the state of art, Tin and Tellurium targets non-uniformity allow to distinguish the ground state from the excited levels of the target daughter, not between ground state and first excited level

CAPIROSSI VITTORIA CONCLUSIONS

106° CONGRESSO SIF