

The upgrade and performance of the RICH detector

Edoardo Franzoso on behalf of the LHCb Collaboration

11/09/2020

Hadron Particle Identification (PID)

- Cherenkov light reflected towards photodetectors
- ID hypothesis of a candidate particles is compared with the pion hypothesis

025

• DLL variables are obtained from RICHes information

Upgrade and Motivation

RUN	RUN I	RUN II	RUN	III	RUN IV
Period	2010 - 12	2015 - 18	2021 -	- 23	2027-29
\mathcal{L}	$4 \cdot 10^{32} \ cm^{-2} s^{-1}$		$2 \cdot 10^{33} \ cm^{-2} s^{-1}$		
$\int \mathcal{L} dx$	$3 f b^{-1}$	$9 f b^{-1}$	25 fl	b^{-1}	$50 \ fb^{-1}$

New detector requirements for RUN III

- fivefold luminosity increment
- Increased readout from 1 MHz to 40 MHz

LHCb RICH Upgrade

- Optical system redesigned
- Modified mechanics and cooling system
- New Front-End (FE) Electronics and DAQ system
 - HPDs replaced by MaPMTs
 - FE electronics to deal with 40 Mhz readout rate
 - CLARO8 ASIC
 - FPGA-based Digital Board
 - GigaBit Transceiver chip for data transmission

11/09/2020

New Photomultipliers and Readout

To achieve the required readout rate, a new electronic (CLARO chip) has been developed and coupled with Multi-Anode PhotoMultiplier Tubes (MaPMTs), instead of the Hybrid Photon Detectors used for previous LHC runs

MaPMTs

- R-type (1") and H-type(2")
- 64 pixels each
- High quantum efficiency (QE) super-bialkali photocathode
 - lower chromatic error
- Gain ~ 2 10^6 at 1kV with 1:3 pixel gain spread for a single MaPMT
- Dark count rate (DCR) < 1 kHz for each pixel pixel

CLARO ASIC

8 channel amplifier/discriminator

- 0.35 µm AMS CMOS technology
- Recovery time < 25 ns
- Adjustable threshold and attenuation for each channel
- Triple modular redundancy protection
- Radiation- hard by design

11/09/2020

Elementary Cell

MaPMTs and readout electronics are coupled in a compact and fully functional unit called Elementary Cell (EC) 2 types of EC :

- R, hosting 4 MaPMTs of 1"
- H, hosting one 2" MaPMT

The BackBoard provides the interface between the EC and the FPGA based Digital Boards.

4 ECs coupled with 2 Digital Boards constitutes a Photon Detector Module, the basic element of a RICH column

11/09/2020

Elementary Cell Quality Assurance (ECQA) (I)

Single components validation and full EC quality assurance

ECQA test stations

- NI LabVIEW control software
- Test protocol established for EC acceptance/rejection

11/09/2020

Elementary Cell Quality Assurance (ECQA) (II)

Test Protocol

- S-curve
- Threshold Scan
- DCR
- Afterpulses

11/09/2020

The Photon Detector Module (PDM)

The PDM is the logic unit which allows to interface the EC with the LHCb readout architecture

A PDM is made by 4 ECs.

PDMs are grouped in columns.

More columns constitutes a RICH planes

11/09/2020

Columns Commissioning at CERN

RICH planes are organized in columns

RICH2 columns first commissioning is completed.

A lot of work has been done and is ongoing for mechanics, optics, commissioning, software.

RICH1 commissioning ongoing

pictures by Silvia Gambetta

11/09/2020

Upgrade Performances

Overall an improvement in the Cherenkov rings resolution (mrad) is expected

- QE peaks at higher wavelength
- No Point Spread Function
- New optics (lower emission point error)

Source	HPD - RICH 1	MaPMT - RICH 1	HPD - RICH 2	MaPMT - RICH 2
Chromatic	0.84	0.58	0.48	0.31
Pixel	0.60	0.44	0.19	0.19
Emission point	0.76	0.37	0.27	0.27
Total	1.70	0.78	0.65	0.45

Simulation of RICH performance is constantly updated with experimental input

Excellent PID performance of the RICH is maintained

11/09/2020

Time Gate

DOI:10.17863/CAM.45822

Gating signal observed by RICH in the 25 ns bunch crossing interval

Signal from a pp collision fits within a time window of 50 ps for RICH1 and 500 ps in RICH2

Time gate has been studied during particle beam test at the CERN SPS

From simulation

- B: background from tracks and photons travelling directly to the detector planes
- S: Cherenkov signal
 - red band \rightarrow 3.125 ns 0
 - blue band \rightarrow 6.250 ns 0
- R : background due to additional reflections

During tests, when a 6.25 ns gate is applied, the continuous background is suppressed by a factor of 3-4

Time gate applied by FPGA adapted to sample the CLARO signal at 320 MHz

- LHCb will increase luminosity to 2.10³³ cm⁻² s⁻¹
- readout at 40 MHz bunch crossing rate
- RICH1 mechanics and optics modified
- RICH Photodetectors and Readout replaced
 - MaPMTs instead of HPDs
 - CLARO chip for fast readout
 - FPGA based Digital Board
- Quality Assurance successfully validated components
- Columns commissioning ongoing
 - RICH2 columns commissioned
 - Starting RICH1 commissioning

Conclusions

Photon Detector Quality Assurance (PDQA)

11/09/2020