

106° CONGRESSO NAZIONALE - SOCIETÀ ITALIANA DI FISICA 14-18 Settembre 2020

DESPEC phase-0 campaign at GSI

Experimental study of proton-rich nuclei in the ¹⁰⁰Sn region

14th-18th September 2020

Marta Polettini Università degli Studi di Milano & INFN

Outline

- Introduction: Case study
- Experimental details
- Analysis techniques
- Preliminary results
- Conclusions and outlook

Collaboration

M. Polettini⁽¹⁾⁽²⁾, G. Benzoni⁽²⁾, A. Bracco⁽¹⁾⁽²⁾, **M. Górska-Ott⁽³⁾**, J. Gerl⁽³⁾, **P. Regan⁽⁴⁾⁽⁵⁾**, **B. Cederwall**⁽⁶⁾, Z. Podolyak⁽⁴⁾, H.M. Albers⁽³⁾, S. Alhomaidhi⁽³⁾⁽⁸⁾, T. Arici⁽³⁾, A. Banerjee⁽³⁾, P. Boutachkov⁽³⁾, T. Dickel⁽³⁾, H. Grawe⁽³⁾), E. Haettner⁽³⁾, H. Heggen⁽³⁾, N. Hubbard⁽³⁾⁽⁸⁾, I. Kojouharov⁽³⁾, N. Kurz⁽³⁾, A.K. Mistry⁽³⁾⁽⁸⁾, S. Pietri⁽³⁾, E. Sahin⁽³⁾⁽⁸⁾, H. Schaffner⁽³⁾, C. Scheidenberger⁽³⁾, A. Sharma⁽⁹⁾, H. Weick⁽³⁾, H.J. Wollersheim⁽³⁾, **A. Yaneva⁽³⁾**, Ö. Aktas⁽⁶⁾, A. Algora⁽¹⁶⁾, C. Appleton⁽¹⁵⁾, J. Benito⁽²⁰⁾, A. Blazhev⁽¹⁰⁾, A. Bruce⁽⁷⁾, M. Brunet⁽⁴⁾, R. Canavan^{(4),(5)}, B. Das⁽⁶⁾, T. Davinson⁽¹⁵⁾, A. Esmaylzadeh⁽¹⁰⁾, L. M. Fraile⁽²⁰⁾, G. Häfner⁽¹⁴⁾, O. Hall⁽¹⁵⁾, **S. Jazrawi^{(4),(5)}**, P. John⁽⁸⁾, J. Jolie⁽¹⁰⁾, D. Kahl⁽¹⁵⁾, V. Karayounchev⁽¹⁰⁾, G. Kosir⁽¹¹⁾, R. Lozeva^{(13),(14)}, B. S. Nara Singh⁽¹⁸⁾, R. Page⁽¹⁹⁾, C. Petrache⁽¹⁴⁾, J. Petrovic⁽⁶⁾, J.-M. Régis⁽¹⁰⁾, M. Rudigier ⁽⁸⁾, P. Ruotsalaine⁽¹²⁾, L. Sexton⁽¹⁵⁾, M. Si⁽¹⁴⁾, V. S. Tembleque⁽²⁰⁾, J. Vesic⁽¹¹⁾, J. Vilhena⁽¹⁷⁾, P. Woods⁽¹⁵⁾, G. Zimba⁽¹²⁾

⁽¹⁾ Dipartimento di Fisica, Università degli Studi di Milano ⁽²⁾ INFN. Sezione di Milano ⁽³⁾ GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ⁽⁴⁾ Department of Physics, University of Surrey, Guildford, UK ⁽⁵⁾ National Physical Laboratory, Teddington, Middlesex, UK ⁽⁶⁾ KTH Royal Institute of Technology, Stockholm, Sweden ⁽⁷⁾ School of Computing Engineering and Mathematics, University of Brighton, Brighton, UK ⁽⁸⁾ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany ⁽⁹⁾ Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India ⁽¹⁰⁾ Institut für Kernphysik der Universität zu Köln, Zülpicher Strasse 77, D-50937 Kln, Germany ⁽¹¹⁾ Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia ⁽¹²⁾ University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylän yliopisto, Finland ⁽¹³⁾ IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg, France ⁽¹⁴⁾ CSNSM, CNRS/IN2P3, Université Paris-Sud, F-91405 Orsay Campus, France ⁽¹⁵⁾ University of Edinburgh, School of Physics and Astronomy, Edinburgh EH9 3FD, UK ⁽¹⁶⁾ Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain ⁽¹⁷⁾ Laboratoire de Physique de la Matière Condensé et Nanostructures, Université Lyon I, CNRS, UMR 5586, Domaine scientifique de la Doua, F-69622 Villeurbanne Cedex, France ⁽¹⁸⁾ SUPA, School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, UK ⁽¹⁹⁾ Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom ⁽²⁰⁾Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, E-28040 Madrid, Spain

Case study: seniority isomers in ⁹⁴Pd

The experiment was focused on the proton rich nuclei along the N=Z line

between A=90 and A=100:

- Seniority isomers study in ⁹⁴Pd
- Proton emission in ⁸⁹Rh and ⁹³Ag

Strong drop in the B(E2) value in the $8+ \rightarrow 6+$ transition between ⁹²Pd and ⁹⁶Cd

Verification of Shell Model calculations for the most proton rich Pd isotopes

⁹⁴Pd provides a stringent test for the various models :

> Measurement of lifetimes of the known 6+, 8+ states below the 14+ isomer

Case study: Search for proton emission in ⁸⁹Rh and ⁹³Ag

The astrophysical rp-process is active in **Type I X-ray bursts**, thermonuclear runaways on the surface of neutron

stars in close binary systems.

Protons are fused successively to generate nuclei in the vicinity of ¹⁰⁰Sn,

 \longrightarrow gamma-α reactions \longrightarrow α-unbound nuclei

Waiting points:

- Enhancement of mass abundance of the considered isotope
- Shaping of the composition of the rp-process ashes

Predicting this composition reliably is important for the understanding of:

- neutron-star crusts
- the origin of ^{92,94}Mo and ^{96,98}Ru

GSI facility and FRS

The nuclei of interest were produced using the fragmentation

of a ¹²⁴Xe beam at an energy of 850MeV/nucleon.

- Acceleration of heavy ion beams with:
 - UNILAC (linear accelerator)
 - SIS18 (synchrotron)
- Selection and transport using:
 - $\beta \rho \Delta E \beta \rho$ method
 - $T oF \beta \rho \Delta E$ method
- Identification via the measurement of:
 - The ratio of mass number over ionic charge A/Q

• The atomic number Z or the X position in the final focal plane

FRS+DESPEC at GSI-FAIR: the β decay station

The setup is composed of:

• AIDA: a stack of three DSSSD detectors

8x8 cm², 1 mm thick, 128x128 strips

- **bPlast**: fast plastic detector
 - BC-400 scintillator material
- **DEGAS/GALILEO**: HPGe array for gamma detection arranged into 6 triple clusters
- FATIMA: array of 36 LaBr₃(Ce) of dimensions 1.5" diameter and 2" length

AIDA

Identification of the ions of interest

- ✓ Recontruction of the ions of interest via ID plots
- Identification of corresponding γ transitions in the HPGe energy spectra

Ongoing:

- Search for additional γ-ray transitions
- Level's lifetime measurements

Isomers lifetime measurements: ⁹⁶Pd and ⁹⁴Pd

Comparison with simulations

The data were used to fine tune **GEANT4 simulations**:

14th-18th September 2020

Conclusions and outlook

Experimental study in the N=Z region between A=90 and A=100 to search for seniority isomers in ⁹⁴Pd and proton emitters in the vicinity of ¹⁰⁰Sn.

- ✓ Final commissioning of the **DESPEC setup** and **analysis techniques**
- ✓ Successful identification of the **ions of interest** and **isomers**

Further developments:

- Ongoing lifetime studies for isomers in ⁹⁴Pd
- The **β decay** of the species is under study

Thank you for your attention!

