Mini-MALTA for future experiments

106° Congresso SIF

Depleted Monolithic Active Pixel Sensor prototype developed in TowerJazz 180 nm imaging process Hybrid detector

Monolithic detector

Sensor + Amp + Digital

Depleted Monolithic Active Pixel Sensor prototype developed in TowerJazz 180 nm imaging process

Small collection electrode (3 μ m)

Monolithic detector

Sensor + Amp + Digital

36.4

Depleted Monolithic Active Pixel Sensor prototype developed in TowerJazz 180 nm imaging process

Small collection electrode (3 μ m)

→ Small «fill factor»

Hybrid detector

Monolithic detector

Sensor + Amp + Digital

Depleted Monolithic Active Pixel Sensor prototype developed in TowerJazz 180 nm imaging process

Small collection electrode (3 μ m)

Monolithic detector

Sensor + Amp + Digital

For future HEP experiments

Designed for outermost layer of the ATLAS Inner Tracker (ITK) pixel detector

time resolution	25 ns
rate	1 MHz/mm ²
particle flux	2x10 ¹⁵ n _{eq} /cm ²
TID (Total Ionizing Dose)	100 Mrad

MALTA issues: Random Telegraph Noise

Proposed solution: M3 transistor enlarged

MALTA issues: low detection efficiency

MALTA issues: low detection efficiency

Proposed solution: new implant geometries

NWELL COLLECTION

Mini-MALTA characterization

Laboratory measurements:

- Threshold scan
- Noise occupancy
- Signal response using ⁵⁵Fe source

Threshold scan

Noise occupancy

Neutron irradiated chip (2x10¹⁵ n_{eq} /cm²) @ +20°C with ⁹⁰Sr

Noise occupancy

Signal response using ⁵⁵Fe source

Conclusions

Mini-MALTA, as its precursor MALTA,

- is cheap
- has low power dissipation
- has low noise (< 20 e⁻)

Conclusions

Mini-MALTA, as its precursor MALTA,

- is cheap
- has low power dissipation
- has low noise (< 20 e⁻)

Solutions proposed to overcome MALTA issues improve:

- threshold and noise
- energetic resolution
- efficiency

proving detector radiation hardness.

Conclusions

Mini-MALTA, as its precursor MALTA,

- is cheap
- has low power dissipation
- has low noise (< 20 e⁻)

Solutions proposed to overcome MALTA issues improve:

- threshold and noise
- energetic resolution
- efficiency

proving detector radiation hardness.

Mini-MALTA is suitable for future High Energy Physics experiments.