

Search for α decay of naturally occurring Hf-nuclides using a Cs₂HfCl₆ scintillator

106° CONGRESSO NAZIONALE September 14-18, 2020

Vincenzo Caracciolo on behalf of the collaboration. University of Roma "Tor Vergata" and INFN

Potentially α decay of naturally occurring Hf-nuclides

Some potential transitions of Hf isotopes and related information. Only naturally occurring isotopes (with natural abundance δ) and with Q > 0 between g.s. transitions or between g.s. and lowest bound level transitions (with spin/parity J^{π}) are listed. E is the kinetic energy of the alpha particle. N is the number of nuclei in the CHC crystal used in this work. Experimental measurements (when available) and theoretical prediction of the half-live are reported in the last four columns.

Nuclide	J^{π}	δ	Q_{α}	E_{lpha}	N	$T_{1/2}$ (y)			
Transition	of								
	$\begin{array}{c} \text{Parent} \rightarrow \\ \text{Daughter Nuclei} \\ \text{and its level (keV) } \boxed{10,11} \end{array}$	(%) [2]	(keV) [12]	(keV)		Experimental	[15]	Theoretical [16]	[9]
$^{174}\mathrm{Hf} ightarrow ^{170}\mathrm{Yb}$	$0^+ \to 0^+$, g.s. $0^+ \to 2^+$, 84.2	0.16(12)	2494.5(2.3)	2437.6(2.2)	1.0×10^{19}	$2.0(4) \times 10^{15} [6, 13]$ $\geqslant 3.3 \cdot 10^{15} [14]$	$3.5 \cdot 10^{16}$ $1.3 \cdot 10^{16}$	7.4×10^{16} 3.0×10^{18}	3.5×10^{16} 6.6×10^{17}
$^{176}\mathrm{Hf} ightarrow ^{172}\mathrm{Yb}$	$0^{+} \rightarrow 0^{+}, \text{ g.s.}$ $0^{+} \rightarrow 2^{+}, 78.7$	5.26(70)	2254.2(1.5)	2203.3(1.5)	3.3×10^{20}	$> 3.0 \times 10^{17}$ [14]	$2.5 \times 10^{20} \\ 1.3 \times 10^{22}$	$6.6 \times 10^{20} \\ 3.5 \times 10^{22}$	$ \begin{array}{c} 0.0 \times 10 \\ 2.0 \times 10^{20} \\ 4.9 \times 10^{21} \end{array} $
$^{177}\mathrm{Hf}~\rightarrow~^{173}\mathrm{Yb}$	$7/2^- \rightarrow 5/2^-$, g.s. $7/2^- \rightarrow 7/2^-$, 78.6	18.60(16)	2245.7(1.4)	2195.3(1.4)	1.2×10^{21}		$4.5 \times 10^{20} \\ 9.1 \times 10^{21}$	$5.2 \times 10^{22} \\ 1.2 \times 10^{24}$	$\begin{array}{c} 4.4 \times 10^{22} \\ 3.6 \times 10^{23} \end{array}$
$^{178}\mathrm{Hf} \rightarrow ^{174}\mathrm{Yb}$	$0^+ \to 0^+, \text{ g.s.}$ $0^+ \to 2^+, 76.5$	27.28(28)	2084.4(1.4)	2037.9(1.4)	1.7×10^{21}	$> 2.0 \times 10^{17} $ [14]	3.4×10^{23} 2.4×10^{25}	$\begin{array}{c} 1.1 \times 10^{24} \\ 8.1 \times 10^{25} \end{array}$	$\begin{array}{c} 2.2 \times 10^{23} \\ 7.1 \times 10^{24} \end{array}$
$^{179}\mathrm{Hf} ightarrow ^{175}\mathrm{Yb}$	$9/2^+ \rightarrow 7/2^+$, g.s. $9/2^+ \rightarrow 9/2^+$, 104.5	13.62(11)	1807.7(1.4)	1767.6(1.4)	8.6×10^{20}	$\geqslant 2.2 \times 10^{18} $ [14] $\geqslant 2.2 \times 10^{18} $ [14]	$4.5 \times 10^{29} \\ 2.0 \times 10^{32}$	4.0×10^{32} 2.5×10^{35}	$4.7 \times 10^{31} \\ 2.2 \times 10^{34}$
$^{180}\mathrm{Hf} ightarrow ^{176}\mathrm{Yb}$	$0^+ \to 0^+, \text{ g.s.}$ $0^+ \to 2^+, 82.1$	35.08(33)	1287.1(1.4)	1258.7(1.4)	2.2×10^{21}	$\geqslant 1.0 \times 10^{18} \ \boxed{14}$	$6.4 \times 10^{45} 4.0 \times 10^{49}$	5.7×10^{46} 4.1×10^{50}	$\begin{array}{c} 9.2 \times 10^{44} \\ 2.1 \times 10^{48} \end{array}$

T.P. Kohman, Phys. Rev. 121, 1758 (1961);

The experiment

Schematic cross-sectional view of the experimental set-up (not in scale). There are shown the CHC crystal scintillator (1) coupled with a 3 inches PMT (2), the HP-Ge detector (3), which is separated by a cylindrical Teflon ring (4). They are completely surrounded by a passive shield made by archaeological Roman lead (5), high purity copper (6), low radioactive lead (7). The whole set-up (with the exception of the cold finger for the HP-Ge detector) is enclosed in a Plexiglas box (8) continuously flushed with HP-N₂ gas.

Low background measurements of the CHC crystal

NPA 1002 (2020) 121941

Isotopic composition of ^{nat}Hf measured in a sample of the CHC crystal by ICP-MS

Isotope	Abundance (%)
¹⁷⁴ Hf	(0.156(6))
$^{176}\mathrm{Hf}$	5.18(5)
$^{177}\mathrm{Hf}$	18.5(1)
$^{178}\mathrm{Hf}$	27.2(1)
$^{179}{ m Hf}$	13.9(1)
¹⁸⁰ Hf	35.2(2)

Concentrations of trace contaminants in the CHC crystal as measured by ICP-MS analysis. The limits are at 68% C.L.

	Nuclide	Concentration (ppb)
	$^{144}\mathrm{Nd}$	<2.4
	$^{147}\mathrm{Sm}$	0.6(1)
ſ	$^{148}\mathrm{Sm}$	0.4(1)
	$^{151}\mathrm{Eu}$	19(7)
	$^{152}\mathrm{Gd}$	< 0.02
	$^{180}\mathrm{W}$	< 0.4
	$^{184}\mathrm{Os}$	< 0.003
	$^{186}\mathrm{Os}$	< 0.25
	$^{190}\mathrm{Pt}$	< 0.02
	209 D :	~n

Nuclide	Q_{α}	$T_{1/2}$	Isotopic	E_{α}	Expected
	(keV)	(y)	Abundance	(keV)	Counts
	[10]	[10]	(%) [2]		
$^{144}\mathrm{Nd}$	1906.4(17)	$2.29(16) \times 10^{15}$	23.798(19)	1854.8(17)	< 0.007
$^{147}\mathrm{Sm}$	2311.2(10)	$1.060(11) \times 10^{11}$	15.00(14)	2249.9(10)	36(6)
$^{148}\mathrm{Sm}$	1986.9(10)	$7(3)\times10^{15}$	11.25(9)	1934.6(10)	$3.6(1) \times 10^{-4}$
$^{152}\mathrm{Gd}$	2204.4(10) [11]	$1.08(8) \times 10^{14}$	0.20(3)	2147.8(10)	$< 1 \times 10^{-3}$
$^{186}\mathrm{Os}$	2820.4(13)	$2.0(11)\times10^{15}$	1.59(64)	2761.0(13)	$< 6 \times 10^{-4}$
$^{190}\mathrm{Pt}$	3252.6(6)	$6.5(3) \times 10^{11}$	0.012(2)	3185.5(6)	< 0.1
$^{209}\mathrm{Bi}$	3137.3(8)	$2.01(8) \times 10^{19}$	100	3078.4(8)	$< 4 \times 10^{-7}$

Low background measurements of the CHC crystal

Data analysis

Time-amplitude analysis of ²²⁸Th sub-chain and the derived Q.F.

Pulse Shape Discrimination (PSD) based on the pulse mean-time

The time-amplitude analysis was used to select the events of the following decay subchain of the ²³²Th family:

²²⁴Ra (Q = 5789 keV; $T_{1/2}$ = 3.66 d) \rightarrow ²²⁰Rn (Q = 6405 keV; $T_{1/2}$ = 55.6 s) \rightarrow ²¹⁶Po (Q = 6906 keV; $T_{1/2}$ = 0.145 s) \rightarrow ²¹²Pb.

An average activity of 228 Th in the CHC crystal scintillator has been estimated: $100(50) \mu Bq/kg$

The energies of the peaks of ²²⁴Ra, ²²⁰Rn and ²¹⁶Po, selected by the described time-amplitude analysis, are 2260(200) keV, 2540(200) keV, 2780(240) keV (γ scale), respectively.

Data analysis

NPA 1002 (2020) 121941

The energies of the peaks of ²²⁴Ra, ²²⁰Rn and ²¹⁶Po, selected by the described time-amplitude analysis, are 2260(200) keV, 2540(200) keV, 2780(240) keV (γ scale), respectively.

Results on the decay of naturally occurring Hf isotopes

When adopting the claimed half-life 2.0(4) 10^{15} y for the 174 Hf decay, the expected number of events - within 2848 h of data taking with the used CHC crystal - is about **1100** counts. Thus, considering that the measured events are **553(23)** in total, even ascribing all of them to 174 Hf decay (despite the analysis reported above), one can safely rule out the result of 2.0(4) 10^{15} y; in fact, even in such an unlike hypothesis, the $T_{1/2}$ value derived from the present experimental data would be 4,01(17) 10^{15} y, i.e. is about **4.5** σ far from the value **2.0(4)** 10^{15} y. Thus, the $T_{1/2}$ value **2.0(4)** 10^{15} y is safely rejected. Let us now perform a more refined determination of the $T_{1/2}$ value of $T_{1/2}$ va

Results on the decay of naturally occurring Hf isotopes

Running-test, tail probabilities: Upper 94% Lower 12%

Nuclide Transition	Parent, Daughter					
	Nuclei and its Energy Level (keV)	Exp present work	perimental previous works	[15]	Theoretical [16]	9]
$^{174}\mathrm{Hf}\rightarrow^{170}\mathrm{Yb}$	$0^+ \rightarrow 0^+$, g.s.	$7.0 \pm 1.2 \times 10^{16}$	$2.0 \pm 0.4 \times 10^{15}$ 6, 13	$3.5 \cdot 10^{16}$	7.4×10^{16}	3.5×10^{16}
	$0^{+} \rightarrow 2^{+}, 84.3$	≥ 1.1 × 10 ¹⁰	≥ 3.3 × 10 ¹³	1.3 · 1010	3.0×10^{10}	6.6 × 10°°
$^{176}\mathrm{Hf}~\rightarrow~^{172}\mathrm{Yb}$	$0^+ \to 0^+$, g.s. $0^+ \to 2^+$, 78.7	$\geqslant 9.3 \times 10^{19}$ $\geqslant 1.8 \times 10^{16}$	$\geqslant 3.0\times 10^{17}$	2.5×10^{20} 1.3×10^{22}	$6.6 \times 10^{20} \\ 3.5 \times 10^{22}$	$\begin{array}{c} 2.0 \times 10^{20} \\ 4.9 \times 10^{21} \end{array}$
$^{177}\mathrm{Hf} ightarrow ^{173}\mathrm{Yb}$	$7/2^- \rightarrow 5/2^-$, g.s. $7/2^- \rightarrow 7/2^-$, 78.6	$\geqslant 3.2 \times 10^{20}$ $\geqslant 7.5 \times 10^{16}$	- ≥ 1.3 × 10 ¹⁸	4.5×10^{20} 9.1×10^{21}	5.2×10^{22} 1.2×10^{24}	4.4×10^{22} 3.6×10^{23}
$^{178}\mathrm{Hf}\rightarrow^{174}\mathrm{Yb}$	$0^+ \to 0^+$, g.s. $0^+ \to 2^+$, 76.5	$\geqslant 5.8 \times 10^{19}$ $\geqslant 6.9 \times 10^{16}$	$^{-}$ $\geqslant 2.0 \times 10^{17}$	3.4×10^{23} 2.4×10^{25}	1.1×10^{24} 8.1×10^{25}	2.2×10^{23} 7.1×10^{24}
$^{179}{ m Hf} ightarrow^{175}{ m Yb}$	$9/2^+ \rightarrow 7/2^+$, g.s. $9/2^+ \rightarrow 9/2^+$, 104.5	$\geqslant 2.5 \times 10^{20}$ $\geqslant 5.5 \times 10^{17}$	$\geqslant 2.2 \times 10^{18}$ $\geqslant 2.2 \times 10^{18}$	4.5×10^{29} 2.0×10^{32}	4.0×10^{32} 2.5×10^{35}	4.7×10^{31} 2.2×10^{34}
$^{180}\mathrm{Hf}\rightarrow^{176}\mathrm{Yb}$	$9/2^+ \rightarrow 7/2^+$, g.s. $9/2^+ \rightarrow 9/2^+$, 82.1	_	$^{-}$ $\geqslant 1.0 \times 10^{18}$	6.4×10^{45} 4.0×10^{49}	5.7×10^{46} 4.1×10^{50}	9.2×10^{44} 2.1×10^{48}

Conclusion

To study the decay of naturally occurring hafnium to the ground state and the first excited state of a CHC crystal scintillator was used in coincidence with a HP-Ge detector in 2848 h of live time.

- The results rules out the $T_{1/2}$ value of the decay of ¹⁷⁴Hf given in literature. In particular, we found that the decay of ¹⁷⁴Hf to the ground state has been definitely observed with a $T_{1/2} = 7.0(1.2) \times 10^{16} \text{ y}$. This value is in good agreement with the theoretical predictions.
- ➤ lower limits of the half-life for decay of ¹⁷⁴Hf to the first excited state and for decay of ¹⁷⁶Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf either to the ground state or to the first excited level of daughter nuclides (10¹⁶-10²⁰ y).