CHARGED TRIPLE GAUGE COUPLINGS AT PRESENT AND FUTURE COLLIDERS

Giovanni Guerrieri, University of Trieste

What is a charged Triple Gauge Coupling?

- Non-Abelian self-coupling of the two Ws with a Z/γ
- The (charged) TGC is probed in di-boson production at colliders.

Why the Triple Gauge Coupling?

- The Standard Model (SM) is expected to be completed (dark matter, neutrino masses...)
- The high-energy behaviour of the WW cross-section and the angular distributions of the WW decay products could be affected by new physics phenomena at higher (with respect to the actual 13 TeV) centre-of-mass energies.

Effective Lagrangians

- Not enough information to provide a fundamental description of properties of a system.
- Parameterization of the corresponding effects by introducing new interactions with coefficients to be determined phenomenologically.
- Familiar example: the β -decay Fermi coupling constant:

$$\mathcal{L}_{\beta} = G_{F}(\bar{u}_{p}\gamma_{\mu}u_{n})(\bar{u}_{e}\gamma^{\mu}u_{\nu_{e}})$$

Charged Triple Gauge Couplings at present and future colliders - Giovanni Guerrieri - Università degli studi di Trieste

Effective Lagrangians

- The Lagrangian of a 4D field has dimensionality $[\mathcal{L}] = [\text{energy}]^{+4}$
- Fermionic fields have dimensionality $[\Psi] = [\text{energy}]^{+3/2}$
- In order to conserve the energy density of the lagrangian, the coefficient has to assume a dimension $G_F \propto [energy]^{-2}$

$$\mathcal{L}_{\beta} = G_{F}(\overline{u}_{p}\gamma_{\mu}u_{n})(\overline{u}_{e}\gamma^{\mu}u_{\nu_{e}})$$

Charged Triple Gauge Couplings at present and future colliders - Giovanni Guerrieri - Università degli studi di Trieste

PRESENT AND FUTURE COLLIDERS

LHC

THE ATLAS DETECTOR

- Multi-purpose cylindrical detector
- Tracker system
- EM + hadronic calorimeters
- Muon detecting system

HL-LHC

COLLIDER OVERVIEW

Charged Triple Gauge Couplings at present and future colliders - Giovanni Guerrieri - Università degli studi di Trieste

FCC-ee

COLLIDER OVERVIEW

- 97.75 km circumference ring
- Centre of mass energy of collisions:
 - *Z*-pole (91 GeV)
 - W^+W^- production threshold (160 GeV)
 - ZH production threshold (240 GeV)
 - $t\bar{t}$ production threshold (365 GeV)
- Total integrated luminosity: 167 ab⁻¹

Working point	Luminosity	Tot. lum./year	Goal	Run time
	$(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	$(ab^{-1})/year$	(ab^{-1})	(years)
Z first two years	100	24	150	4
Z other years	200	48		
W	25	6	10	1-2
Н	7.0	1.7	5	3
RF reconfiguration		1		
$t\overline{t}$ 350 GeV (first year)	0.8	0.20	0.2	1
$t\bar{t} \ 365 { m GeV}$	1.4	0.34	1.5	4

FCC-ee

THE IDEA DETECTOR

- High precision measurements: silicon detectors (ALICE insipired)
- High granularity tracking system
- Calorimeter sensitive to both scintillation and Čerenkov light
- Magnet system (ATLAS inspired)

c_{www} LIMIT EXTRACTION

CWWW LIMIT AT LHC

SIGNAL REGION DEFINITION

Selection cuts on final state particles: Eur. Phys. J. C 79 (2019) 884

Selection requirement	Selection Value	$ \nu_e$
p_T^ℓ	$> 27 { m GeV}$	q
η^{ℓ}	$\begin{array}{l} \eta^e < 2.47 \; (\text{excluding } 1.37 < \eta^e < 1.52) \\ \eta^\mu < 2.5 \end{array}$	
Number of <i>b</i> -tagged jets $(p_T > 20 \text{ GeV}, \eta < 2.5)$	0	$\lambda \wedge \wedge \wedge \uparrow$
Number of jets $(p_T > 35 \text{ GeV}, \eta < 4.5)$	0	$Z_{I}\gamma^{*}$ γ^{μ}
E_T^{miss}	$>20 \mathrm{GeV}$	W-W
$p_T^{e\mu}$	> 30 GeV	
$m^{e\mu}$	$>55 \mathrm{GeV}$	q $\sqrt{\overline{\nu}}$

c_{www} limit at lhc

KINEMATIC DISTRIBUTIONS

CWWW LIMIT AT LHC

EFT coefficient dependence

CWWW LIMIT AT LHC

95% CL LIMIT EXTRACTION

• Systematic uncertainty affecting interval size:

Uncertainty source	Uncertainty on interval size $[\%]$
b-tagging	3.2
pileup	1.5
top-quark background modelling	1.1
Jet energy scale	<1
Total	3.8

• Limit extraction result:

$$c_{WWW} \in [-3.3, 3.3] \, \mathrm{TeV}^{-2}$$

CWWW LIMIT AT HL-LHC

KINEMATIC DISTRIBUTIONS

- Increased centre-of mass energy of collisions
- Increased integrated luminosity
- Same event selection of LHC analysis
- 14 TeV, 365 ab⁻¹

CWWW LIMIT AT HL-LHC

95% CL LIMIT EXTRACTION

• Systematic uncertainty affecting interval size:

Uncertainty source	Uncertainty on interval size $[\%]$
b-tagging	1.4
pileup	1.2
top-quark background modelling	1.1
Jet energy scale	<1
Total	2.3

• Limit extraction result:

•
$$c_{WWW} \in [-0.45, 0.45] \, \mathrm{TeV}^{-2}$$

c_{WWW} LIMIT AT FCC-ee

EVENTS PRODUCTION

365 GeV e^+e^- collisions, 1.5 ab⁻¹

- $e^+e^- \rightarrow W^+W^-$ events.
- No generator level cuts.
- Constant background, yielding $\sim 1.8\%$ of the total distribution.
- Kinematic variable selected: $\cos \theta_W$.

c_{WWW} LIMIT AT FCC-ee

SIGNAL REGION DEFINITION

Selection cuts on leptonic final state particles: arXiv.org/abs/hep-ex/0308067v1

D1 Both jets must contain at least one charged track and have $|\cos \theta| < 0.96$; at least one jet must satisfy < 0.90.

Acoplanarity angle: $\phi_{acopl} = \pi - \phi_{12}$ Acollinearity angle: $\theta_{acol} = \pi - \theta_{12}$

- D2 There must be at least two ECAL clusters, one of which reports an energy deposition larger than 0.5 GeV.
- D3 The acollinearity angle of the two jets must exceed 10° .
- D4 For events with the acoplanarity angle $\phi^{acop} > 60^{\circ}$, $|\cos \theta_p^{miss}| < 0.95$. For events with $\phi^{acop} < 60^{\circ}$, $|\cos \theta_p^{miss}| < 0.995$.
- D5 Events with acollinearity angle less than 20° are rejected if the most energetic ECAL energy deposition exceeded 80% of the beam energy.

Di-jet events constitute $\sim 89\%$ of the total

Di-jet Selection Criteria		
Selection Requirement	WW production (20000 events)	
$\overline{\theta_{acol} > 5^{\circ}}$	13357	
$p_T/\sqrt{s} > 0.05$	5158	
D1	1722	
D2	895	
D3	737	
D4	244	
D5	214	

c_{WWW} LIMIT AT FCC-ee

KINEMATIC DISTRIBUTIONS AND SYSTEMATIC UNCERTAINTIES

• Systematic uncertainties $\sim 10^{-4} \ll$ statistic uncertainty

CWWW LIMIT AT FCC-ee

95% CL LIMIT EXTRACTION

• Limit extraction result:

 $c_{WWW} \in [-0.38, 0.38] \,\mathrm{TeV^{-2}}$

c_{WWW} 95% CL limit [TeV ⁻²]
[-3.3, 3.3]
[-0.45, 0.45]
$[-0.38, \ 0.38]$

RESULTS

COMPARISON WITH LITERATURE

arXiv:submit/2557680

HL-LHC 14 TeV, 3 ab⁻¹

FCC-ee 240 GeV, 10 ab⁻¹

23

SUMMARY

Accelerator Complex	c_{WWW} 95% CL limit [TeV ⁻²]
LHC	[-3.3, 3.3]
HL-LHC	[-0.45, 0.45]
FCC-ee	$[-0.38, \ 0.38]$

- Confidence interval narrowing
- High energy sensitivity to TGCs
- Improvement on the c_{WWW} actual constraints

THANK YOU FOR THE ATTENTION