

Simulation and Processing of Signals in the Vetoes of the PADME Experiment 106 Congresso Nazionale SIF 2020

Elizabeth Long - Sapienza Università di Roma

The PADME Experiment

- The Positron Annihilation to Dark Matter Experiment searches for a dark photon A' in the process $e^+e^- \rightarrow A' \gamma$.
- The principle background is Bremsstahlung from positrons on target (in red in the diagram below).
- To detect positrons which have undergone Bremsstrahlung, we use a Positron Veto (PVeto) made of plastic scintillators in a magnetic field.

Studying Signals

- The high rate of particles entering the vetoes makes distinguishing between particles difficult.
- To study the performance of different approaches to separating particle hits, we used a toy MC that creates signals.

Veto Signals

- The simulated signals have a linear rise time of 7ns and exponential fall with τ of 20ns.
- The number of hits per event ~ Poisson(3), arrival time ~Uniform[80ns,280ns], amplitude ~ Landau(50,12)

Raw Data + Derivative + TSpectrum

- The signal derivative is approximated by $V_{Deriv}(t) =$ V(t) - V(t - 4ns), where V(t)is the height of the signal at time *t* (ns).
- If the derivative is negative, it is set to **0**.
- The derivative is passed to TSpectrum - a built-in Gaussian peak finder in ROOT.
- TSpectrum returns the number and position of the peaks it finds.

Convolutional Neural Network (CNN)

- A simple CNN was constructed to count the number of hits present in a waveform.
- Input: raw (unprocessed) waveforms
- Output: textfile of number of hits reconstructed per event
- Trained on 200,000 training and 100,000 validation events.
- Tested on 200,000 events.

Layer (type)	Output Shape	Param #
<pre>input_3 (InputLayer)</pre>	[(None, 1024, 1)]	0
Conv_1 (Conv1D)	(None, 1022, 16)	64
<pre>leaky_re_lu_6 (LeakyReLU)</pre>	(None, 1022, 16)	0
<pre>MaxPool_1 (MaxPooling1D)</pre>	(None, 511, 16)	0
Conv_2 (Conv1D)	(None, 509, 16)	784
leaky_re_lu_7 (LeakyReLU)	(None, 509, 16)	0
MaxPool_2 (MaxPooling1D)	(None, 254, 16)	0
Conv_3 (Conv1D)	(None, 252, 32)	1568
<pre>leaky_re_lu_8 (LeakyReLU)</pre>	(None, 252, 32)	0
MaxPool_3 (MaxPooling1D)	(None, 126, 32)	0
Flatten (Flatten)	(None, 4032)	0
Dense_1 (Dense)	(None, 64)	258112
ReLU_dense_1 (ReLU)	(None, 64)	0
dropout_2 (Dropout)	(None, 64)	0
Dense_2 (Dense)	(None, 64)	4160
ReLU_dense_2 (ReLU)	(None, 64)	0
Output (Dense)	(None, 14)	910
Total params: 265,598 Trainable params: 265,598 Non-trainable params: 0		

Results: Number of Hits Per Event

Results: Number of Hits Per Event

Elizabeth Long - 106 Congresso Nazionale SIF 2020

- For the CNN, efficiency remains ~ 1 for $NHits_{True} \leq 5$
- Using the derivative + TSpectrum:
 - Number of events with $NHits_{True} \leq 3$ is overestimated
 - Number of events with *NHits_{True}* > 3 is underestimated

Results: Reconstruction Efficiency vs Time

Minimum time difference between hits per event

Results: Reconstruction Efficiency vs Time

Minimum time difference between hits per event

Elizabeth Long - 106 Congresso Nazionale SIF 2020

Minimum time difference between hits per event

Results: Reconstruction Efficiency vs Time Minimum time difference between hits per event

Minimum time difference between hits per event

Results: Reconstruction Efficiency vs Time Minimum time difference between hits per event

Minimum time difference between hits per event

8000 **8000**F ToyMC Truth ToyMC Truth Neural Network Derivative + TSpectrum 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 NHits_{Truth} NHits_{Reco} NHits_{Reco} NHits_{Truth} 8 0 0.6 0.6 0.4 0.4 0.2 0.2 00 20 5 10 15 25 20 5 10 15 25 ΔT_{Min} (ns) $\Delta T_{Min} (ns)$ Red line (95%) = separability threshold: Minimum ΔT at which hits are considered separable

Elizabeth Long - 106 Congresso Nazionale SIF 2020

Results: Reconstruction Efficiency Ratios

- The CNN reaches separability (95% efficiency) at **8**ns
- With the derivative + TSpectrum separability is reached at ~20ns

Summary

- The global efficiency of the CNN at reconstructing the number of hits per event is 92%, while the derivative + TSpectrum method is only 72% efficient.
- **95%** efficiency in hit separation is reached at:
 - $\Delta T_{Min} \ge 8$ ns for CNN
 - $\Delta T_{Min} \ge 20$ ns for derivative + TSpectrum
- This shows that using a CNN is a good way of reconstructing the number of hits that have produced a simulated waveform.
- Next steps are to study how well this works on data and how to recover hit times.

Thank you for your attention.