

Misura della violazione di CP nel decadimento $B_s^0 \rightarrow J/\psi \phi(1020)$ in CMS

Enrico Lusiani^a

106[.] Congresso Nazionale della Società Italiana di Fisica 14/09/2020

^aUniversità & INFN, Padova (IT) **Contact:** enrico.lusiani@pd.infn.it

Introduzione

Motivazione

- La fase ϕ_s quantifica la violazione di CP nell'interferenza tra il decadimento diretto del mesone B_s^0 in un autostato di CP e il decadimento tramite mixing B_s^0 - \overline{B}_s^0 .
- Previsione Modello Stardard: $\phi_s \simeq -2\beta_s = -36.96^{+0.72}_{-0.84}$ mrad [CKMfitter]
 - + $\beta_s = arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$ è uno degli angoli del triangolo unitario
- Eventuale nuova fisica potrebbe cambiare il valore di ϕ_s fino al ~10 % tramite nuove particelle che contribuiscono al mixing $B_s^0 \overline{B}_s^0$ [JHEP04(2010)031]
- I risultati attuali sono in accordo con il MS, ma l'incertezza sperimentale è molto più alta di quella teorica

• $B_s^0 \rightarrow J/\psi \phi(1020)$ è un buon canale per la misura di ϕ_s :

- Nessuna violazione diretta di CP
- Solo una fase di violazione CP
- Facile da ricostruire con un alto rapporto S/B

• Altre osservabili interessanti vengono misurate nella

stessa analisi: Γ_s , $\Delta \Gamma_s$, Δm_s , $|\lambda| = \left| \frac{q}{p} \frac{\overline{A}_f}{\overline{A}_f} \right|$

Enrico Lusiani

Misura della violazione di CP nel decadimento $B^0_s \rightarrow J/\psi\,\varphi$ in CMS

Strategia di analisi

Analisi angolare

- Lo stato finale non è un singolo autostato di CP
- È necessaria un'**analisi angolare dipendente dal tempo** per separare gli autostati dispari e pari in CP nello stato finale
- Informazioni necessarie:
 - Variabili angolari:
 - ψ_{T} : angolo di elicità del K⁺ nel sistema di riferimento della ϕ
 - $\pmb{\theta}_{T}{:}$ angolo polare del μ^{*} nel sistema di riferimento della J/ ψ
 - + $\boldsymbol{\varphi}_{\mathsf{T}}$: angolo azimutale del μ^{*} nel sistema di riferimento della J/ ψ
 - Tempo proprio di decadimento ct del mesone
 - Incertezza sul tempo proprio σ (ct), che viene valutata per ogni evento
 - Stima accurata del flavour iniziale del mesone B⁰_s (i termini più sensibili a φ_s nella decay rate dipendono da questa informazione)

Flavour tagging

- + L'analisi angolare ha bisogno di una stima accurata del flavour iniziale del mesone $\mathsf{B}^0_{\mathsf{s}}$
- Algoritmo scelto: muone opposite-side
- Sfrutta decadimenti $b \to \mu X$ nel secondo b nell'evento
- Sviluppato usando eventi $B_s^0 \rightarrow J/\psi \phi(1020)$ simulati
- La probabilità di mistag viene stimata per ogni evento grazie ad una rete neurale dedicata
- L'output è calibrato nei dati usando decadimenti $B^{\pm} \rightarrow J/\psi~K^{\pm}$ self-tagging
- La probabilità media di mistag viene calcolata pari a ~27 %

CMS-BPH-20-001

Strategia di trigger

Una nuova strategia di trigger è stata sviluppata per migliorare l'efficienza di tagging $\epsilon_{tag} = \begin{pmatrix} N_{tagged} \\ \overline{N_{events}} \end{pmatrix}$

Trigger: un candidato J/ $\psi \rightarrow \mu^{+}\mu^{-}$ più un μ addizionale

- + Il muone addizionale è usato per identificare il flavour del $\mathsf{B}^0_{\mathsf{S}}$
- Questo trigger consente di migliorare l'efficienza di tag nel campione, al costo di un ridotto numero di eventi di segnale selezionati
- La luminosita usata in questa analisi è
 96.4 fb⁻¹, ~ 5 volte quella dell'analisi in Run 1: il numero di eventi è simile (~ 48500) a causa della rate di trigger ridotta, ma l'efficienza di tag è molto più alta, ~ 50%

Fit di massima verosimiglianza e risultati

Fit di massima verosimiglianza

- Per estrarre i parametri fisici viene effettuato un fit di massima verosimiglianza unbinned
- **Osservabili di input:** $\cos \theta_{T}$, $\cos \psi_{T}$, φ_{T} , ct, σ (ct), $m_{B_{2}^{0}}$, decisione di tag, ω_{tag}
- Parametri fisici: φ_s, ΔΓ_s, Γ_s, Δm_s, |λ|, più alcune fasi e ampiezze
- Il segnale viene modellato usando la decay rate teorica, convoluta con un termine di risoluzione temporale e moltiplicata per i termini efficienza temporale e angolare
- Consideriamo due fonti principali di background:
 - Combinatorio
 - Mesoni B⁰ erroneamente ricostruiti come B⁰_s (peaking background)

Parameter	Fit value	Stat. uncer.	Syst. uncer.
φ _s [mrad]	-11	±50	±10
ΔΓ _s [ps ^{−1}]	0.114	±0.014	± 0.007
∆m_s [ħ ps ⁻¹]	17.51	+ 0.10 - 0.09	±0.03
Г _s [ps ^{−1}]	0.6531	±0.0042	±0.0024
 λ 	0.972	±0.026	±0.008
A ₀ ²	0.5350	±0.0047	±0.0048
$ A_{\perp} ^2$	0.2337	±0.0063	±0.0044
A _S ²	0.022	+ 0.008 - 0.007	± 0.016
δ _{ll} [rad]	3.18	±0.12	± 0.03
δ_{\perp} [rad]	2.77	±0.16	± 0.04
δ _{S⊥} [rad]	0.221	+ 0.083 - 0.070	±0.048

CMS-BPH-20-001

 φ_s e ΔΓ_s sono in accordo con il MS (CKMfitter, arXiv:1912.07621):

> $\phi_{s}^{MS} = -36.96^{+0.72}_{-0.84} \text{ mrad}$ $\Delta\Gamma_{s}^{MS} = 0.091 \pm 0.013 \text{ ps}^{-1}$

 Γ_s e Δm_s sono consistenti con la media mondiale (Phys. Rev. D 98 (2018) 030001):

> $\Gamma_{\rm s}^{\rm WA}$ = 0.6624 ± 0.0018 ps⁻¹ $\Delta m_{\rm c}^{\rm WA}$ = 17.757 ± 0.021 hps⁻¹

- |λ| è consistente con il non avere violazione diretta di CP (|λ| = 1)
- Questa è la prima misura di Δm_s e |λ| da CMS

Combinazione con i risultati a 8 TeV

• I risultati sono stati **combinati** con quelli della precedente analisi a \sqrt{s} = 8 TeV (Phys. Lett. B 757 (2016) 97)

[•] La combinazione è in accordo con il MS $\phi_s = -21 \pm 45 \text{ mrad}$ $\Delta \Gamma_s = 0.1073 \pm 0.0097 \text{ ps}^{-1}$

- L'incertezza su ϕ_s è notevolmente migliorata grazie al miglioramento dell'accuratezza del tag dovuto alla nuova strategia di trigger
- $\Delta\Gamma_s$ invece non è sensibile alle prestazioni dell'algoritmo di tagging e la sua precisione è simile nelle due analisi

Conclusioni

Sommario e prospettive future

- La fase CPV ϕ_s e la differenza tra le larghezze di decadimento $\Delta\Gamma_s$ sono state misurare usando 48500 eventi $B_s^0 \rightarrow J/\psi \phi(1020) \rightarrow \mu^+\mu^- K^+K^-$, raccolti da CMS a \sqrt{s} = 13 TeV, corrispondenti a \mathcal{L}_{int} = 96.4 fb⁻¹
- I risultati sono stati combinati con quelli dell'analisi a \sqrt{s} = 8 TeV, ottenendo

 $\phi_{\rm s} = -21 \pm 45 \,\rm{mrad}$ $\Delta\Gamma_{\rm s} = 0.1073 \pm 0.0097 \,\rm{ps}^{-1}$

• I risultati sono consistenti con le previsioni del Modello Standard

Progetti futuri

- CMS intende analizzare tutti i dati raccolti nel Run2, aggiungendo un trigger complementare che richiede una J/ψ "displaced" più due tracce cariche
 - Per migliorare ulteriormente la performance di tag verranno utilizzati anche dei tagger basati su elettroni e jet insieme all'attuale tagger basato sui muoni
- Si stima che la precisione della misura migliorerà del 30 % per ϕ_s e di un fattore ~ 2 per $\Delta\Gamma_s$

Grazie per l'attenzione