

A DATA SCIENCE AND DEEP LEARNING ECOSYSTEM FOR HIGH-ENERGY PHYSICS

LUMIN

Giles Strong

INFN-ML KnowledgeBase Use Cases, Online - 27/07/2020

giles.strong@outlook.com

twitter.com/Giles_C_Strong

Amva4newphysics.wordpress.com

github.com/GilesStrong

OVERVIEW

- . Motivation
- 2. LUMIN overview
- 3. Project examples
- 4. Summary

MOTIVATION

Machine learning in high-energy physics

MACHINE LEARNING IN HEP

- Many analyses and experiment software now aim to benefit from using machine learning approaches; often necessary in order to achieve competitive performance
- ML is now an integral part of HEP, and well recognised as such:
 - Establishment of dedicated forums & groups (<u>IML</u>, ATLAS & CMS ML groups)
 - Identified in <u>2020 update of the European</u> <u>Strategy for Particle Physics</u> as essential R&D
- But! Hardware and timing for model training can be a limitation for analysis-level researchers

European Strategy

2020 Strategy Statements

4. Other essential scientific activities for particle physics

Computing and software infrastructure

- There is a need for strong community-wide coordination for computing and software R&D activities, and for the development of common coordinating structures that will promote coherence in these activities, long-term planning and effective means of exploiting synergies with other disciplines and industry
- A significant role for artificial intelligence is emerging in detector design, detector operation, online data processing and data analysis
- Computing and software are profound R&D topics in their own right and are essential to sustain and enhance particle
 physics research capabilities
- More experts need to be trained to address the essential needs, especially with the increased data volume and complexity in the upcoming HL-LHC era, and will also help in experiments in adjacent fields.

d) Large-scale data-intensive software and computing infrastructures are an essential ingredient to particle physics research programmes. The community faces major challenges in this area, notably with a view to the HL-LHC. As a result, the software and computing models used in particle physics research must evolve to meet the future needs of the field. The community must vigorously pursue common, coordinated R&D efforts in collaboration with other fields of science and industry to develop software and computing infrastructures that exploit recent advances in information technology and data science. Further development of internal policies on open data and data preservation should be encouraged, and an adequate level of resources invested in their implementation.

19/06/2020

CERN Council Open Session

MODERN DEEP-LEARNING TECHNIQUES

- <u>Strong, 2020</u> studied the impact of new DNNs techniques on performance and timing using benchmark HEP dataset (<u>HiggsML</u>)
 - HEP-specific data augmentation
 - <u>Icycle</u> learning-rate scheduling
 - New architecture, activation function, etc.
 - Full details in paper
- Solution matched top performance, but trained in 14 minutes on a laptop CPU
 - 86% effective speedup over 1st-place GPU (accounting for hardware improvements)

	Our solution	$1^{\rm st}$ place	2^{nd} place	$3^{\rm rd}$ place
Method	10 DNNs	70 DNNs	Many BDTs	108 DNNs
Train-time (GPU)	$8 \min$	$12\mathrm{h}$	N/A	N/A
Train-time (CPU)	$14\mathrm{min}$	$35\mathrm{h}$	$48\mathrm{h}$	$3\mathrm{h}$
Test-time (GPU)	$15\mathrm{s}$	$1\mathrm{h}$	N/A	N/A
Test-time (CPU)	$3\mathrm{min}$???	???	$20\mathrm{min}$
Score	3.806 ± 0.005	3.80581	3.78913	3.78682

LUMIN

Lumin Unifies Many Improvements for Networks

LUMIN

- LUMIN is a PyTorch wrapper library that provides implementations for these methods
- Also includes other useful methods & classes for working with HEP data and columnar data in general, and more
 - E.g. recent update adds RNNs, CNNs, and a few graph-nets
- Links:
 - Docs
 - Github
 - Colab examples
 - **Issues** contributions welcome!

9 master - \$9 3 branches	🛇 11 tags	Go to file Add file ▼	About
GilesStrong Changes and Rea	dme update	c5ba324 14 days ago 🕚 472 commits	LUMIN - a deep learning and data science ecosystem for high-energy physics.
.vscode	more vector ops	9 months ago	deep-learning machine-learning
docs	running tests	last month	physics science statistics hep
examples	Merge pull request #85 from GilesStrong	g/quick_fixes 19 days ago	pytorch
lumin	Merge branch 'master' of github.com:Gil	esStrong/lumin 14 days ago	🕮 Readme
gitignore	Adding matrix example	6 months ago	私 Apache-2.0 License
.readthedocs.yml	style test	11 months ago	
CHANGES.md	Changes and Readme update	14 days ago	Releases 11
CITATION.md	Adding citation	11 months ago	🛇 v0.5.1 - The Gradient Must (Later
LICENSE	Updating licence	5 months ago	on 12 Feb
MANIFEST.in	Include missing files for sdist	2 months ago	+ 10 releases
README.md	Changes and Readme update	14 days ago	Packages
) abbr.md	Docs for mat heads	7 months ago	No packages published
build.md	Move to new version	5 months ago	Publish your first package
] requirements.txt	running tests	last month	
setup.cfg	Install stuff	2 years ago	Contributors 3
ງ setup.py	Fixes	19 days ago	GilesStrong GilesStrong
EADME.md pypl <mark>90.5.1</mark> python 3.6 J 3.7 lic	ense Apache Software License 2.0 DDI 10.5281/zenod	Ø 9.3664978	kiryteo kiryteo
LUMIN: Lumin	Unifies Many Improven	nents for Networks	Languages

USAGE

- LUMIN can be used to train neural networks for supervised classification and regression tasks using:
 - Columnar data (features in columns events in rows)
 - And/or matrix data with arbitrary dimensions (i.e. ID of 4-vectors, 2D & 3D grids of data, et cetera)
- Data must be coerced into a specific format: HDF5 with an expected layout
 - Methods provided to help with this
 - Trained models can be exported to ONNX and TensorFlow
 - Can run in CMSSW via Tensorflow interface, see e.g cms_hh_tf_inference

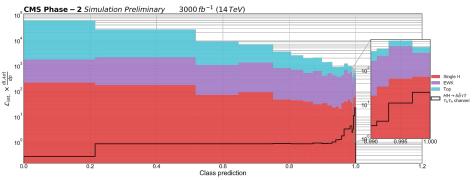
A FEW DISTINGUISHING CHARACTERISTICS

- Ensembling Training and applying with 10 models should be as easy as with 1 model
 - User defines how models should be built and training function creates and trains models
 - A opposed to the user building and training single models
- Modularity Classes, methods, and workflow should be flexible and adaptable without heavy hacking
 - Expected workflow provided, but user free to cherry-pick specific aspects of the framework
 - User can inherit from existing classes to adjust to their own needs

A FEW DISTINGUISHING CHARACTERISTICS

- Automatic feature selection Large menus of potential inputs can be filtered safely to only most useful set
- Modern techniques Users should be able to easily apply the latest, useful, techniques
- Weight handling All data-handling should expect sample weights
- Interpretation Users should know what their models learnt and used during training

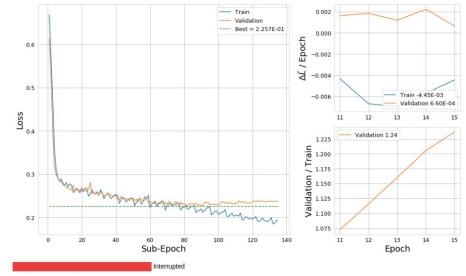
PROJECT EXAMPLES


Past and current usage of LUMIN (or its core techniques)

DI-HIGGS @ HL-LHC

M.Bengala, M.Gallinaro, R.Santo, & G.Strong, 2018-19

- HL-LHC projection studies for $hh \rightarrow bb\tau\tau$
- Completed prior to LUMIN, but used similar techniques as the Higgs ML study
- 20 DNNs trained as binary classifiers for signal|background
- Usage of advanced methods showed 30% improvement in sensitivity

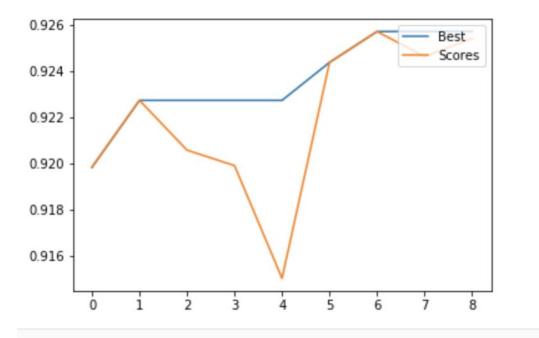

PREDICTIVE ANALYTICS

L.Cazon, R.Conceicao, A.Kocak, R.Lima, F.Riehn, C.Silva, & G.Strong, 2019

- Industry partnership between LIP and Nielsen (global data-measurement company)
- Aim was to develop a predictive model to help proactively retain employees
- LUMIN used to:
 - Automatically select relevant features from menu of several hundred
 - Highlight differences between datasets
 - Tune hyperparameters of model
 - Unfortunately, most details are behind a NDA...

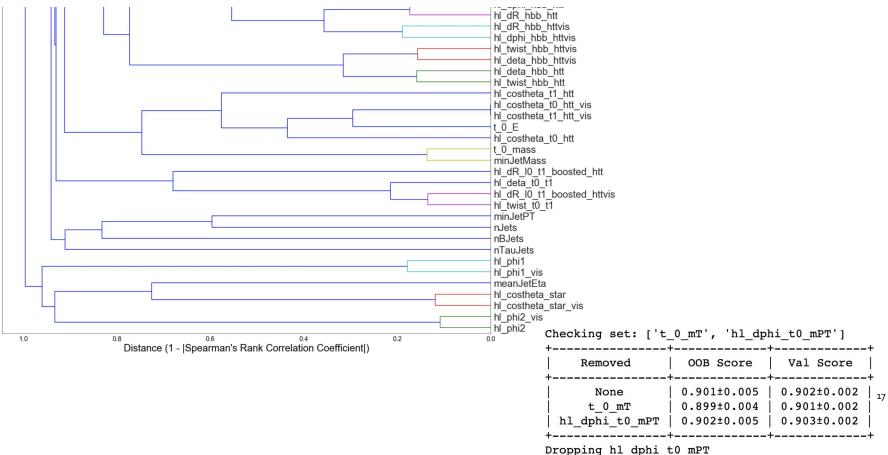
EXAMPLE: TOP-TAGGING FROM JET CONSTITUENTS

- HEP benchmark dataset for top tagging
- Data format: flat, 200 4-vectors, 1.2M jets
- <u>LUMIN example</u> #9 demonstrates:
 - Recursive networks
 - Convolutional networks (inc. ResNet, ResNeXT blocks)
 - Graph nets: Interaction net [<u>1,2</u>], <u>Lorentz</u> <u>Boost Networks</u> (LBN only in bleeding edge version)
- Only uses ~8% of total data and only 15 hardest constituents (to reduce runtime):
 - But, achieves ROC AUC of 0.965 in under 1 minute (c.f. <u>SOTA 0.984</u>)

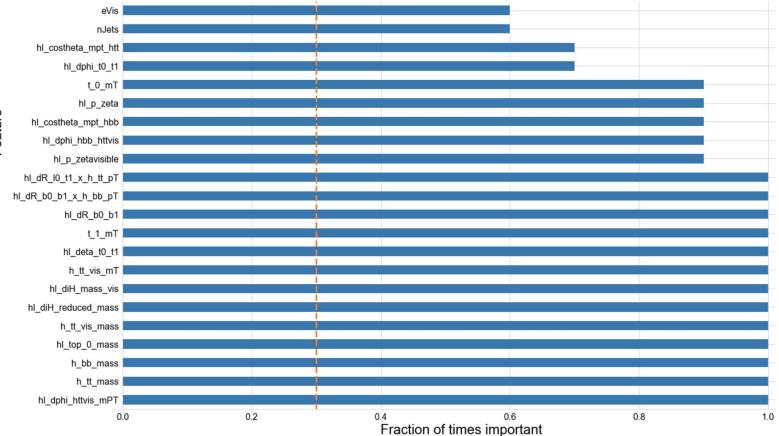


14

Early stopping after 135 sub-epochs Scores are: {'loss': 0.22565512359142303, 'AUC': 0.9652515977610224, 'Acc': 0.9098] Fold took 43.494s

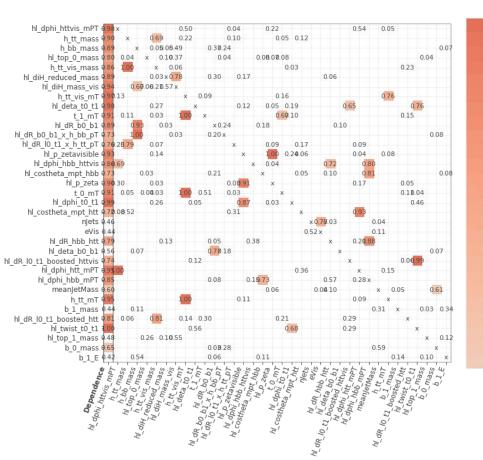

SCREENSHOTS

HYPER-PARAMETER OPTIMISATION: RANDOM FOREST



Better score schieved: min_samples_leaf @ 2 = 0.9198 Better score schieved: min_samples_leaf @ 4 = 0.9227 Better score schieved: max_features @ 0.3 = 0.9244 Better score schieved: max features @ 0.5 = 0.9257

FEATURE SELECTION: CLUSTERING & REMOVAL OF CORRELATED FEATURES


FEATURE SELECTION: CONSISTENT IMPORTANCE

18

Feature

FEATURE SELECTION: REMOVAL OF MUTUALLY DEPENDENT FEATURES

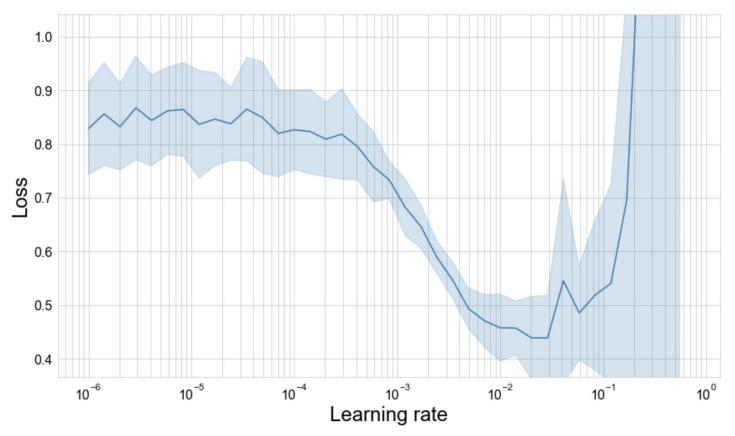
Checking ['hl_t	twist_t0_t1',	'hl_dR_10_t1_boost	ed_htt', 'h_tt_mT',	'hl_dphi_hbb_mPT']
-----------------	---------------	--------------------	---------------------	--------------------

+	+	++
-0.8 Removed	OOB Score	Val Score
	0.935±0.0008 0.9349±0.0006 0.935±0.0005 0.934±0.0006 0.934±0.0006	0.934±0.0004 0.9339±0.0002 0.9341±0.0002 0.9337±0.0005 0.9339±0.0006
+	± .	L 1

Dropping hl dR 10 t1 boosted htt

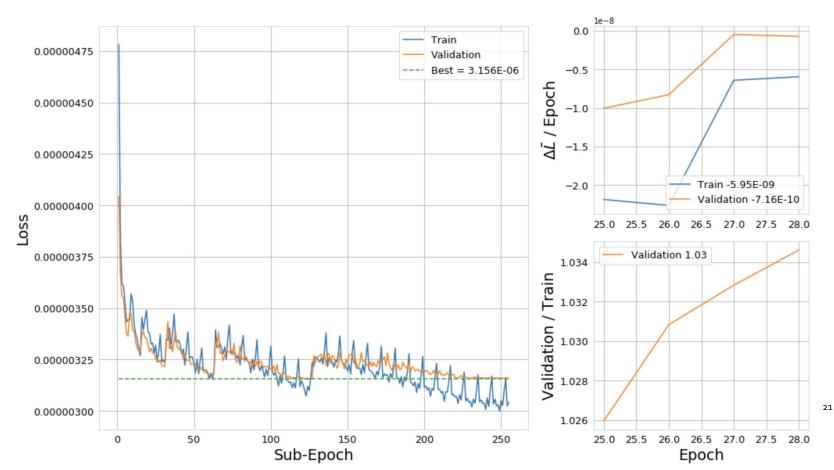
19 predictable features found to pass mutual dependence threshold of 0.8

Checking ['hl_dphi_htt_mPT', 'hl_dphi_t0_t1', 't_0_mT', 'hl_p_zeta', 'hl_dphi_hbb_httvis']

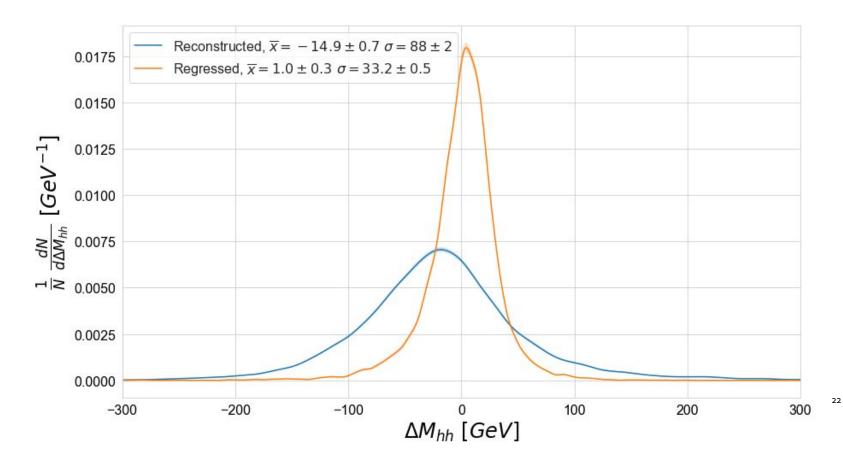

ļ	Removed	00B Score	Val Score
6	None	0.934±0.0009	0.9344±0.0006
	hl_dphi_htt_mPT	0.934±0.0003	0.9343±0.0002
	hl_dphi_t0_t1	0.9347±0.0003	0.9344±0.0006
	t_0_mT	0.9338±0.0006	0.9338±0.0006
	hl_p_zeta	0.9348±0.0006	0.9345±0.0002
	hl_dphi_hbb_httvis	0.9346±0.0007	0.9344±0.0003

Dropping hl_p_zeta

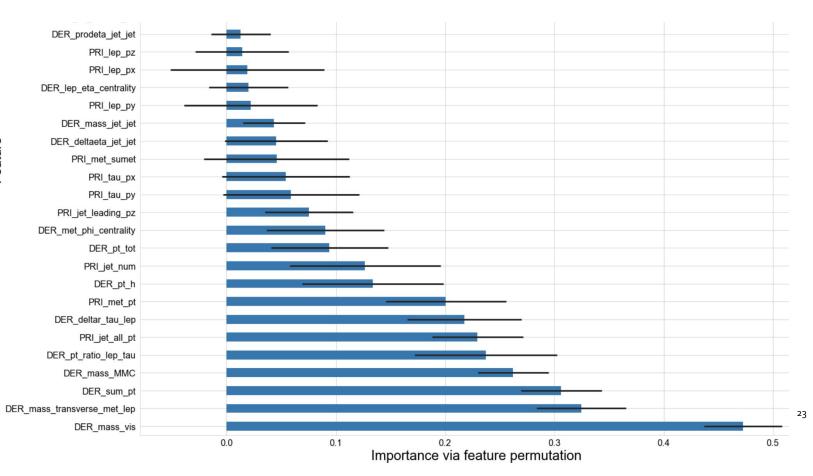
19

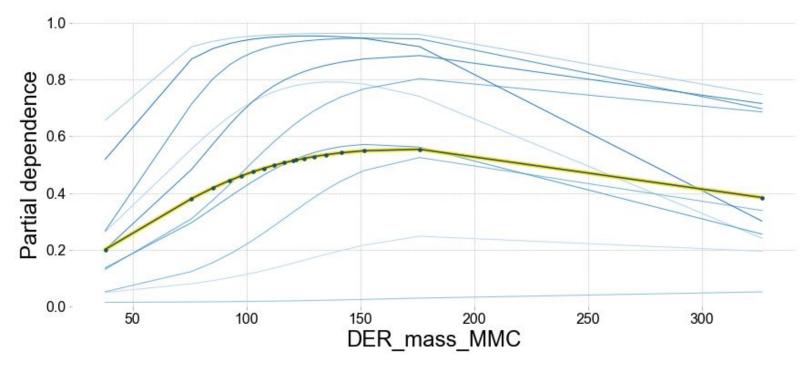

HYPER-PARAMETER OPTIMISATION: LEARNING RATE

LR finder took 1.811s



20


LIVE TRAINING-MONITORING


BOOTSTRAPPED KDE PLOTS

INTERPRETATION: FEATURE IMPORTANCE

INTERPRETATION: PARTIAL DEPENDENCE

SUMMARY

CALL FOR CONTRIBUTIONS

- LUMIN has already been used in several diverse projects
 - But so far only used by me (to my knowledge)
- The package needs people trying it out, playing around, and giving feedback on:
 - Bugs
 - Design & layout choices
 - General suggestions
- Several <u>examples</u> available
- The <u>issues</u> include all my thoughts on possible improvements
 - Dedicated "good first issue" label for getting to know the code base

() 12 Open 🗸 0 Closed	Author +	Label -
Uncertainty bands for plot_roc (good first issue) (improvement) low priority #74 opened 23 days ago by GilesStrong		
Add Mish activation enhancement good first issue investigation fow priority #71 opened 23 days ago by GilesStrong		
Addrepr to ModelBuilder (pood first issue) (mprovement) (ow priority) #64 opened 25 days ago by GilesStrong		
Add SOTA optimisers enhancement good first issue low priority #61 opened 25 days ago by GilesStrong		
Way to resume ensemble training good first issue improvement fow priority #57 opened 25 days ago by GilesStrong		
Extend LRFinder to run over multiple epochs (good first issue) (improvement) (low priorit #56 opened 25 days ago by GilesStrong	y	
Expand/change Ensemble to include AbsEndcap (pood first issue) (improvement) (ow #55 opened 25 days ago by GilesStrong	priority	
Polyak averaging for test-time data-augmetation enhancement good first issue fow #54 opened 26 days ago by GilesStrong	priority	
Minimum improvement early stopping callback enhancement good first issue fow pr #51 opened 26 days ago by GilesStrong	iority	
Feature importance from DataFrame enhancement good first issue fow priority #45 opened 27 days ago by GilesStrong		
Make HEPAugFoldYielder work with pT eta phi coordinates enhancement good fire #44 opened 27 days ago by GilesStrong	st issue low pr	iority wait
Numpy version of `df2foldfile` enhancement good first issue low priority #39 opened 27 days ago by GliesStrong		