Inference-Aware Neural Optimisation (INFERNO)

ML-INFN Meeting

Pablo de Castro, Tommaso Dorigo, Lukas Layer, Giles Strong

Problem Statement

Our data is high dimensional. How do we choose the best summary statistics for the inference of the parameter of interest?

Classical approach in HEP

- Signal vs. background classification with simulated samples by minimizing Binary Cross-Entropy of Neural Networks to approximate the optimal Likelihood Ratio
- Inference with histograms by building binned non-parametric
 Poisson counts likelihood

Problem Statement

Our data is high dimensional. How do we choose the best summary statistics for the inference of the parameter of interest?

2.0

0.0+-20

30

40

50

s parameter of interest

60

70

80

no nuisance effect

with nuisance effect

- Problem: simulations are imperfect → lack of knowledge for inference accounted by additional nuisance parameters
- additional nuisance parameters
 Neglecting nuisance parameters in the training process leads to larger measurement uncertainties
- Upper limit of ML usefulness in LHC analyses

INFERNO

Overview

- Inference-Aware Neural Optimization developed by Pablo de Castro and Tommaso Dorigo: P. de Castro Manzano, T. Dorigo, "INFERNO: Inference-Aware Neural Optimization", Comp. Phys. Commun. 244 (2019) 170; <u>https://doi.org/10.1016/j.cpc.2019.06.007</u>
- Objective: optimize statistical inference in the presence of nuisance parameters by learning non-linear summary statistics with neural networks via minimization of an inferencemotivated loss
- Code written in TF 1.x (<u>https://github.com/pablodecm/paper-inferno</u>) → key elements reproduced in TF 2.x (<u>https://github.com/llayer/inferno</u>)

Summary statistics with INFERNO

- "Standard HEP summary statistics" histograms are not differentiable → softmax as differentiable approximation
- Nuisance parameters approximated by changes of mixture *ŝ* coefficients, translations of a subset of features, or conditional density ratio re-weighting → restricted to likelihood-free inference problems

$$\hat{s}_i(D; \boldsymbol{\phi}) = \sum_{x \in D} \frac{e^{f_i(\boldsymbol{x}; \boldsymbol{\phi})/\tau}}{\sum_{j=0}^b e^{f_j(\boldsymbol{x}; \boldsymbol{\phi})/\tau}}$$

Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation $g(\theta)$. Input 2: initial parameter values θ_s . Input 3: parameter of interest $\omega_0 = \theta_k$. Output: learned summary statistic $s(D; \phi)$.

Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation $g(\theta)$.

Input 2: initial parameter values θ_s .

Input 3: parameter of interest $\omega_0 = \theta_k$.

Output: learned summary statistic $s(D; \phi)$.

1: **for** i = 1 to *N* **do**

2: Sample a representative mini-batch G_s from $g(\boldsymbol{\theta}_s)$.

Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation $g(\theta)$.

Input 2: initial parameter values θ_s .

Input 3: parameter of interest $\omega_0 = \theta_k$.

Output: learned summary statistic $s(D; \phi)$.

- 1: **for** i = 1 to *N* **do**
- 2: Sample a representative mini-batch G_s from $g(\boldsymbol{\theta}_s)$.
- 3: Compute differentiable summary statistic $\hat{s}(G_s; \phi)$.

Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation $g(\theta)$.

Input 2: initial parameter values θ_s .

Input 3: parameter of interest $\omega_0 = \theta_k$.

Output: learned summary statistic $s(D; \phi)$.

- 1: **for** i = 1 to *N* **do**
- 2: Sample a representative mini-batch G_s from $g(\boldsymbol{\theta}_s)$.
- 3: Compute differentiable summary statistic $\hat{s}(G_s; \phi)$.
- 4: Construct Asimov likelihood $\mathcal{L}_A(\boldsymbol{\theta}, \boldsymbol{\phi})$.
- 5: Get information matrix inverse $I(\boldsymbol{\theta})^{-1} = \boldsymbol{H}_{\boldsymbol{\theta}}^{-1}(\log \mathcal{L}_A(\boldsymbol{\theta}, \boldsymbol{\phi})).$
- 6: Obtain loss $U = I_{kk}^{-1}(\boldsymbol{\theta}_s)$.

Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation $g(\theta)$.

Input 2: initial parameter values θ_s .

Input 3: parameter of interest $\omega_0 = \theta_k$.

Output: learned summary statistic $s(D; \phi)$.

- 1: **for** i = 1 to *N* **do**
- 2: Sample a representative mini-batch G_s from $g(\boldsymbol{\theta}_s)$.
- 3: Compute differentiable summary statistic $\hat{s}(G_s; \phi)$.
- 4: Construct Asimov likelihood $\mathcal{L}_A(\boldsymbol{\theta}, \boldsymbol{\phi})$.
- 5: Get information matrix inverse $I(\boldsymbol{\theta})^{-1} = \boldsymbol{H}_{\boldsymbol{\theta}}^{-1}(\log \mathcal{L}_A(\boldsymbol{\theta}, \boldsymbol{\phi})).$
- 6: Obtain loss $U = I_{kk}^{-1}(\boldsymbol{\theta}_s)$.
- 7: Update network parameters $\phi \to \text{SGD}(\nabla_{\phi} U)$.
- 8: **end for**

Application to 3D Synthetic Mixture model

୫

0

0

, A

°, 0, , ∕,

3.r

2.0

0.00

%

A

0

 x_1

Taken from https://arxiv.org/pdf/1806.04743.pdf

D

ზ

ծ

*x*₀

 \mathbf{x}_{1}

Model

- 3D Mixture model: 2D Multivariate
 Normal and 1D Exponential
- Signal distribution is fully specified
- Background distribution depends on the parameters *r* (shift of the 2D Normal mean) and λ (rate of the exponential)

0.° ~ 2.° 3. ~

 X_2

Results for the synthetic model

Taken from https://arxiv.org/pdf/1806.04743.pdf

Comparison of inference with INFERNO summary statistics and classical binary cross-entropy summary statistics

- **Confidence intervals** considerably **narrower** with INFERNO than those using BCE and closer to those expected when using the true model
- Improvement over standard classification increases with more nuisance parameters
- The inference-aware summary statistics learnt for θ_s work well when θ_{true} /= θ_s in the range of variation explored.

Benchmarks

- Several inference problems are considered based on the 3D benchmark mixture model
- Systematic comparison, shows that **INFERNO** clearly **outperforms any classifier** (even optimal Bayes) when nuisance parameters are relevant

Table 1: Expected uncertainty on the parameter of interest s for each of the inference benchmarks considered using a cross-entropy trained neural network model, INFERNO customised for each problem and the optimal classifier and likelihood based resuls.

	Benchmark 0	Benchmark 1	Benchmark 2	Benchmark 3	Benchmark 4
NN classifier	$14.99^{+0.02}_{-0.00}$	$18.94_{-0.05}^{+0.11}$	$23.94^{+0.52}_{-0.17}$	$21.54_{-0.05}^{+0.27}$	$26.71_{-0.11}^{+0.56}$
INFERNO 0	$15.51\substack{+0.09 \\ -0.02}$	$18.34_{-0.51}^{+5.17}$	$23.24_{-1.22}^{+6.54}$	$21.38^{+3.15}_{-0.69}$	$26.38^{+7.63}_{-1.36}$
INFERNO 1	$15.80^{+0.14}_{-0.04}$	$16.79\substack{+0.17 \\ -0.05}$	$21.41^{+2.00}_{-0.53}$	$20.29^{+1.20}_{-0.39}$	$24.26^{+2.35}_{-0.71}$
INFERNO 2	$15.71_{-0.04}^{+0.15}$	$16.87^{+0.19}_{-0.06}$	$16.95\substack{+0.18 \\ -0.04}$	$16.88^{+0.17}_{-0.03}$	$18.67\substack{+0.25\\-0.05}$
INFERNO 3	$15.70^{+0.21}_{-0.04}$	$16.91\substack{+0.20\\-0.05}$	$16.97\substack{+0.21\\-0.04}$	$16.89\substack{+0.18 \\ -0.03}$	$18.69^{+0.27}_{-0.04}$
INFERNO 4	$15.71_{-0.06}^{+0.32}$	$16.89^{+0.30}_{-0.07}$	$16.95\substack{+0.38\\-0.05}$	$16.88^{+0.40}_{-0.05}$	$18.68\substack{+0.58\\-0.07}$
Optimal classifier	14.97	19.12	24.93	22.13	27.98
Analytical likelihood	14.71	15.52	15.65	15.62	16.89

Taken from https://arxiv.org/pdf/1806.04743.pdf

Future of INFERNO

Applications

- Application of INFERNO to a real world CMS analysis
- Optimizations of detector designs
- Development of a common package across experiments

- Training and optimization needs powerful GPUs
- Data preprocessing and ML will benefit from Spark / Kubernetes clusters
- Ideally move entirely to cloud computing

Summary

- INFERNO shows promising performance on toy problems
- Several advanced applications of INFERNO are planned / have started
- Need for powerful hardware

BACKUP

Top pair cross section with CMS open data

TOP-11-004 - Top pair cross section in tau+jets $\sigma(tt) = 152 \pm 12$ (stat.) ± 32 (syst.) ± 3 (lum.) pb Events / 0.1 10⁴ CMS vs=7 TeV, 3.9 fb Data stat.+syst. uncertainty tt τ₊+iets single top W/Z + iets 10³ background 00000 10² 10 Data/MC 1.5 0.5 9<u>5</u> -0.5 0.5 1.5 iet D_{NN} https://arxiv.org/abs/1301.5755

- Replication of full TOP-11-004 with CMS open data including systematics
- Relevant 2011 legacy samples available for Data and MC
- Analysis dominated by systematic uncertainties and uses a ANN with TMVA
- Simple analysis, but can be made more challenging by analyzing more decay channels

Status: implemented basic framework to analyze CMS open data with full systematic uncertainties

Recent related work on differentiable analysis

Work by S. Wunsch et. al (CMS)

- Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters (https://arxiv.org/ abs/2003.07186)
- Idea: construct binned Poisson Likelihood by using histograms and approximate the gradient of the bin function by the derivative of a Gaussian → avoids the softmax approximation

Work by N. Simpson, L. Heinrich et. al (ATLAS)

 Idea: optimize neural networks with differentiable profile likelihood in the loss function via fixed-point differentiation → allows to directly optimize CLs limits

https://github.com/pyhf/neos

Library *neos* based on autodiff library **JAX** and library **FAX** for differentiating fixed point problems in JAX

HSF activity for differentiable analysis

- New HSF activity for differential analysis related to various HEP problems across experiments
- Discussion channel for the community on gitter