ALICE resistivity measurements

Resistivity scans

- 2 resistivity scans:
 - 1) 15th January 2020
 - 2) 24th June 2020

Chamber	15/01/2020	23/06/2020	
ALICE	16.50	82.01	
CMS-K-TOP	16.80	38.19	Factor 4
CMS-K-BOT	14.50	26.08	M/by avalages
CMS-GT-TOP	9.86	8.18	Why such an
CMS-GT-BOT	8.96	12.05	
EPDT	10.70		

increase

increase?

Let's take a closer look

What can we observe?

- In January → 2 slopes can be observed:
 - 1) the first one looks like a ohmic leakage current, not passing through the gas
 - 2) the second one is due to Ar ionization

- In June → 1 slope:
 - 1) it looks like the same ohmic leakage current but higher

The gap around 1.2 kV in June → we don't know yet

Ideas and plans for the future

 A ohmic leakage current is present in both scans → increases in June wrt January

 It looks like there is a parallel resistance to the gas → maybe due to some isolation issue, already present in Janaury and worse in June

 The current flowing in the parallel resistance reduces the effective HV applied to the gas gap → we don't reach ionization voltage → we don't see the discharge

• Perform another Ar scan (possibly today, July 15th) reaching higher voltages to see if we can reach Ar ionization and measure bakelite resistivity

Backup

CMS GT

CMS KODEL

EP-DT

