Ionization losses and cluster reconstruction

Investigations about the ionization losses of different particles in He-iC_{$_1$}H₁₀ using Garfield++.

- The final goal is to compare the results taken from Garfield with the results taken from Geant4
- Garfield++:
 - study and characterization of the fundamental properties and performance of a single cell or of a drift chamber with simple geometry.
 - It can't be used to simulate a full detector and to study collider events.
- Geant:
 - Simulation of the elementary particle interaction with the material of a full (complex) detector.
 - Study of collider events.
 - The fundamental properties and performance of the sensible elements (drift cells) have to be parameterized or ad-hoc physics models have to be defined.
- Simulation is quite simple:
 - -1cmx1cmx1cm of gas
 - -Several tracks passes through this "gas-box" perpendicularly
- Study of number of clusters, number of electrons, cluster size, ionization energy, ionization loss ...(relevant physics data)
- Ionization process reconstruction starting from the results obtained.
- Analysis of the number of clusters and cluster size trend for different particles with different momenta.

Relevant physics data

100

0 <mark>"</mark>

2000

4000

6000

8000

- to excitations.
- We can't reconstruct the Bethe&Bloch ٠ from this analysis.

10000 Energy loss [eV] 10000

522.1

661.1

Ionization process reconstruction

Reconstruction algorithm

1) From Garfield simulation, the energy loss, "E_{loss}", (track per track) and the ionization energy, "E_{lon}", are known.

- 2) Extract randomly the cluster size from the Cluster Size distribution (Garfield simulation result).
- 3) Evaluate the energy for generation of single cluster as $E_{cl} = E_{ion} * Cls_size$.

4) Iterate the cluster generation up to $E_{loss} \ge E_{cl_{tot}}$.

Ionization process reconstruction

Difference between number of cluster taken from Garfield and number of cluster taken from the algorithm

Difference between # of cluster reconstructed and generated Diff NumOfCls 10000 Entries т ш2200Г Mean 1.643 Std Dev 9.231 2000 1800 1600 1400 1200 1000 800 600 400 200 -400 -80 -40 -20 20 40 60 80 100 0 #of cluster reconstructed-#of cluster generated

Difference between number of electron taken from Garfield and number of electron taken from the algorithm

Difference between # of electron reconstructed and generated

Number of cluster for different particles vs momentum

Standard deviation for Number of Cluster distribution vs momentum

Number of cluster for different particles vs $\beta\gamma$

Standard deviation for Number of Cluster distribution vs $\beta\gamma$

Sqrt(mean)/stdDev of Number of Clusters vs $\beta\gamma$

9

10

Standard deviation for Cluster size distribution vs momentum

11

Standard deviation for Cluster size distribution vs $\beta\gamma$

