Bayesian sensitivity studies for CYGNO

S.Piacentini, A. Messina

13/07/2020

JAGS and PyJags

- For our study we used the general analysis framework python and the MCMC algorithm called *Gibbs Sampler* as implemented in JAGS and interfaced with python in the package pyjags.
- The Monte Carlo simulation gives the unnormalised posterior p.d.f. of the parameters of interest sampled using the Gibbs algorithm.

- JAGS 4.3 <u>http://mcmc-jags.sourceforge.net</u>
- PyJags <u>https://pypi.org/project/pyjags/</u>

Likelihood

$$\mathcal{L} = \mathcal{L}_C \times \mathcal{L}_B$$

$$\mathcal{L}_C = \prod_{i=1}^{N_{bin}} \frac{\lambda_i^{x_i}}{x_i!} e^{-\lambda_i}$$

$$\lambda_i = E \left[\mu_S \sum_{j=\text{He}}^{El} P_{S,j,i} P_j + \mu_B P_{B,i} \right]$$

$$\longrightarrow \mathcal{L}_B = \prod_{i=1}^{N_{bin}} \mathcal{N} \left(\mu_i = B_i, \sigma_i = \sigma_{B_i} \right)$$

_

Fit Inputs

- Background templates.
 - Normalized to 1 event on the whole 2D spectrum
 - Assumptions:
 - 5% uncertainty on each bin [arbitrary]
- > Pseudo dataset
 - Generated from the background templates assuming N_{evt} = 100
- Signal templates
 - Normalized to 1 event on the whole 2D spectrum
 - Computed for $m_x = \{1, 10\}$ GeV
- Prior choices
 - \circ μ_{B} flat prior in the range [0,200] [arbitrary]
 - \circ $\mu_{\rm S}$ flat prior in the range [0,200] [arbitrary]

Fit results in terms of MCMC chain $-m_x = 1 \text{ GeV}$

Fit results in terms of posterior pdf - $m_x = 1 \text{ GeV}$

Fit results

>
$$m_x = 1 \text{ GeV}$$

 $\circ \mu_S [90 \% \text{ C.I.}] = 8.5$
 $\circ \mu_B = 107 \pm 11$
> $m_x = 10 \text{ GeV}$
 $\circ \mu_S [90 \% \text{ C.I.}] = 15$
 $\circ \mu_B = 103 \pm 12$

Conclusions

- The bayesian analysis framework is being set up
- > The computation tools used for the analysis are:
 - JAGS 4.3 <u>http://mcmc-jags.sourceforge.net</u>
 - pyjags <u>https://pypi.org/project/pyjags/</u>
- > We developed a first simplified version of the likelihood
- ➤ We performed a preliminary fit on a pseudo dataset, obtaining, for an exposure corresponding to 100 events, an expected sensitivity of 8.5 events for a NR signal with $m_x = 1$ GeV and 15 events for a NR signal with $m_x = 10$ GeV. These results are reasonable because they are of the order of $\sqrt{N_{evt}} = 10$, and the remaining differences can be attributed to the different shapes of the two signal templates used in the analysis.