

Test of Lepton Flavour Universality using B_s semileptonic decays: normalization channel selection

Università degli Studi di Ferrara

Alessandro Scarabotto (University of Ferrara) Relatore: Prof. Massimiliano Fiorini

Correlatrice: Dr.ssa Stefania Vecchi

LHC beauty experiment (LHCb)

Lepton Flavour Universality (LFU) in the SM

The photon, the W and the Z bosons couple in exactly the same manner to the three lepton generations.

					Decay Ratio	Precision	Deviation from SM
The Standard Model of Particle Physics				e Physics	$\frac{\Gamma_{Z \to \mu^+ \mu^-}}{\Gamma_{Z \to e^+ e^-}}$	0.3~%	$< 1~\sigma$
FERMIONS (matter particles) BOSONS (force carrier		(force carriers)	$\frac{\Gamma_{Z \to \tau^+ \tau^-}}{\Gamma_{Z \to e^+ e^-}}$	0.3~%	$< 1 \sigma$		
SX ^u	b Charm	top	gluon	Higgs boson	$\frac{\mathcal{B}(W^- \to e^- \bar{\nu}_e)}{\mathcal{B}(W^- \to \mu^- \bar{\nu}_\mu)}$	0.08~%	$< 1~\sigma$
QUAF	yn Strange	bottom	photon		$\frac{2\Gamma_{W^- \rightarrow \tau^- \bar{\nu}_\tau}}{\Gamma_{W^- \rightarrow e^- \bar{\nu}_e} + \Gamma_{W^- \rightarrow \mu^- \bar{\nu}_\mu}}$	$2.3 \ \%$	2.6σ
s C		7	ZO		$\frac{\Gamma_{K^- \to e^- \bar{\nu}_e}}{\Gamma_{K^- \to \mu^- \bar{\nu}_\mu}}$	0.4 %	1.2σ
		$\overline{ u\tau}$			$\frac{\Gamma_{\pi^- \to e^- \bar{\nu}_e}}{\Gamma_{\pi^- \to \mu^- \bar{\nu}_{\mu}}}$	0.3~%	1.3σ
elect neutr	ron muon rino neutrino	tau neutrino	W boson	SCIENCEalert	$\frac{\Gamma_{D_s^- \to \tau^- \bar{\nu}_\tau}}{\Gamma_{D_s^- \to \mu^- \bar{\nu}_\mu}}$	6.1~%	$< 1~\sigma$
					$\frac{\Gamma_{J/\psi \to e^+e^-}}{\Gamma_{J/\psi \to e^+e^-}}$	0.3~%	< 1 <i>σ</i>

LFU experimental tests: FCNC $H_b \rightarrow H_s \ell^+ \ell^-$

With H_b b-hadrons such as B^0 and B^{\pm} and H_s hadrons containing an s-quark such as K and K^* mesons

LHCb measurements are $\sim 2.5 \sigma$ lower than the SM expectations

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \ell^- \bar{\nu}_{\ell})}$$

With H_b b-hadrons such as B^0 and B^{\pm} and H_c hadrons containing an c-quark such as D, D^* and J/ψ mesons

The overall difference with the SM predictions corresponds to $3.08~\sigma$

The $R(D_s)$ measurement Study of the semileptonic $B_s^0 \rightarrow D_s^- \ell^+ \nu_\ell$ decay ratio $\blacktriangleright R(D_S) = \frac{BF(B_S^0 \to D_S^- \tau^+ \nu_{\tau})}{BF(B_S^0 \to D_S^- \mu^+ \nu_{\mu})}$ $\blacktriangleright B_s^0 \rightarrow D_s^- \tau^+ \nu_\tau$ with: $\succ \tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$ π^+ 3-prong hadronic decay $\triangleright D_{\rm s}^- \rightarrow K^+ K^- \pi^ \pi^-$

Uncertainty from external contributions

Normalization: $B_s^0 \rightarrow D_s \ 3\pi \ with \ D_s \rightarrow KK\pi$

Common signal-normalization selection

Backgrounds:

b-hadrons decays with similar topology or mis-identified final states

random combination of tracks (combinatorial)

Selection:

Preliminary selection composed trigger cuts and requirements on mass and final states PIDs based on Dalitz Plot and decay misidentification

► Multivariate analysis → Boosted Decision Tree (BDT) machine learning technique

MC samples and Data from 2012

Multivariate common signal-normalization selection: training events

D SELECTION

- Signal: MC selected events
- Bkg: Data events with m(Bs) >5200 MeV/c² and Ds mass sidebands

B SELECTION

- Signal: MC selected events
- Bkg: Data events with m(Bs) >5450 MeV/c²

3π SELECTION

- Signal: MC selected events
- Bkg: Data events with m(Bs) >5450 MeV/c²

Normalization separation from signal

Alessandro Scarabotto (Unife) 7/15/20

MC vs NORM (BDT sel.): Y_FD_ORIVX

13

Efficiencies

Decay	$B_s \to D_s \tau \nu$	$B_s \to D_s 3\pi$	$B \rightarrow D3\pi$
	$\epsilon_{ m sig}$ [%]	$\epsilon_{\rm norm}$ [%]	$\epsilon_{\rm norm}$ [%]
Generation	14.878 ± 0.017	3.414 ± 0.005	15.40 ± 0.02
Filtering	0.245 ± 0.001	2.459 ± 0.007	0.47 ± 0.003
Stripping	51.9 ± 0.2	75.67 ± 0.12	70.5 ± 0.3
MC truth	61.9 ± 0.3	75.17 ± 0.14	68.1 ± 0.3
Trigger	96.89 ± 0.14	96.90 ± 0.07	97.32 ± 0.14
D - D_s sel.	82.6 ± 0.3	81.36 ± 0.15	55.31 ± 0.43
BDTs	83.5 ± 0.3	78.14 ± 0.18	67.6 ± 0.5
FD cut	61.0 ± 0.5	90.07 ± 0.14	90.1 ± 0.4
Total	$(4.57 \pm 0.06) \times 10^{-5}$	$(26.43 \pm 0.13) \times 10^{-5}$	$(11.39 \pm 0.17) \times 10^{-5}$

B_s norm. channel

1.4 % statistical uncertainty on R(Ds)

Selection applied on data

- The BDT selection effect on the background suppression is evident
- ▶ The signal candidates have a continuous distribution from the B_s mass value down to 3000 MeV/ c^2 , due to the inclusive reconstruction

B_s DATA

Candidates/(2 MeV/ c^2)

Pull

Summary of systematics

Systematics on the normalization yield:

- Choice of the fit model
- Analysis of background sources from other b-hadrons decays
- Systematics on the selection efficiency ratio:
 - PID calibration on data
 - Trigger selection efficiencies
 - Momentum scale calibration
 - Data-MC differences evaluated from the yields

Contribution	B_s norm. channel [%]	B_d norm. channel [%]
Fit model	1.2	0.9
Particle Identification	0.3	4.4
Trigger	1.0	1.0
Momentum scale calibration	< 0.1	0.4
Data-MC differences	< 0.1	1.9
Total	1.6	5.0

Final results and Conclusions

Contribution	B_s norm. channel [%]	B_d norm. channel [%]
Normalization yield	2.2	0.9
MC statistics	1.4	1.3
Systematic uncertainties	1.6	5.0
External contributions	19.1	14.3
Total	19.3	15.2

- ► The $B^0 \to D^-(\to K^+\pi^-\pi^-) \pi^+\pi^-\pi^+$ is the **best normalization** channel for the R(Ds) analysis because it contributes to a smaller total relative uncertainty on the measurement of **15.2** % compared to the **19.3** % of the $B_s^0 \to D_s^-(\to K^+K^-\pi^-) \pi^+\pi^-\pi^+$ norm channel
- This study gives strong directions on how to define the overall analysis strategy and possible uncertainties related to the normalization channels

BACKUP

D SELECTION

BDT_D variables:

- Legend: • SIGNAL
 - BKG

NORM Bs

NORM Bd

- Ds: vertex chi2, flight distance (from PV and Bs), pseudorapidity
- Ds daughters: PT, impact parameter chi2 (from PV), track ghost prob.

20

 3π SELECTION

BDT_3pi variables:

- Legend: • SIGNAL
- BKG
- NORM Bs

NORM Bd

- ► 3 pions vertex: vertex chi2, DOCA (distance of closest approach) •
- Pions: pseudorapidity, impact parameter chi2 (from PV), track ghost prob.

log(p2_fromY_TRACK_GhostProb)+0.6

log(p3_fromY_TRACK_GhostProb)+0.6

B SELECTION

BDT_B variables:

- Bs: pseudorapidity, flight distance from PV
- ▶ BDT outputs: BDT_D, BDT_3pi

- SIGNAL
- BKG (right and wrong sign)
- NORM Bs
- NORM Bd

