
Remote and centralized
OpenStack installation and
management

Experience at PG
Mirko Mariotti

mirko.mariotti@unipg.it
acknow. AMS / ASI and PG colleagues

mailto:mirko.mariotti@unipg.it

OpenStack at PG

● Small OpenStack installation (~1000 cores)
● Computational resources for local researcher,

students, labs, events.
● Not only services, base for our R&D on cloud

technologies

OpenStack at PG (some detail)

● AA federated with INFN-AAI and Unipg IDM

● Network virtualization via neutron and VLAN backend

● Storage: cinder, ceph

● Two installation, one production (Mitaka), one

development (Rocky)

● OpenStack core machine also virtualized (outside OS)

● Resources also in ASI (Rome) and Chieti

We will talk about our small experience
about:

● Automatic OpenStack installation

● Integration of remote resources

Automatic OpenStack installation via
Ansible

● We chose Ansible as automatic installation system

● The approach is inventory-centric (keep as much as possible

within nodes variables and build configurations out of it)

● Use ansible roles to map different OpenStack/Ceph elements

● Idempotency of playbooks

OpenStack inventory

OpenStack Installation:

OpenStack components mapped to ansible

roles:

● Common configuration present in every node (rockycommon)
● Compute installation (rockycompute)
● Compute configuration (rockynovaconfig)
● Network configuration (rockyneutronconfig)

OpenStack playbooks

ansible-playbook -i inventory.yaml pb_create_rocky_compute.yaml
--extra-vars='{"host" : "farm-comp-13-01" }'

OpenStack roles example

Rockyneutronconfig role ● The playbook apply the roles
● roles contain the rules to specialize the

configurations using variables from the
inventory

● The resulting filled in configuration file is
pushed on the node.

linuxbridge_agent.ini.j2

Ceph Installation

● Ceph components mapped to ansible roles:

○ Cephmaster (ceph-deploy)

○ Cephnode (storage nodes and admin nodes)

○ Cephconsumer (nodes that use the storage)

Ceph Installation - The inventory

Ceph Roles examples

Node

Consumer

Master

Ceph Cluster creation and Management
examples

ansible-playbook -i inventory.yaml pb_apply_role.yaml
--extra-vars='{"host" : "farmmgmtest" , "role":
"cephconsumer" }'

ansible-playbook -i inventory.yaml
pb_create_ceph_cluster.yaml --extra-vars='{"ceph_master" :
"ceph-master-01" , "ceph_nodes": "farm_ceph_cluster_01" }'

Integration of remote resources

A single OpenStack installation … but the

sites have to be as much autonomous as

possible especially regarding:

● Storage

● Outbound connectivity

Cross-site operations have to be possible

(knowing the risks).

Ideally the traffic among sites would be only

the OpenStack management one.

Resource organized in different zones logically

correspondent to different geographical locations.

SDN (software-defined networking) solution to connect

the different zones.

All build with standard servers and Linux systems.

Overall

Network Requirements for a remote site

● 2 Public IPs (one for the link with the central site, one for

the outbound connectivity)

● VLAN capable switches

● Hypervisors with 2 NICs (Optionally)

SDN

Software-Defined Networking is a way to overlay multiple networks to a
single physical fabric and to control them via software.

Openvswitch is an open source project for SDN

Used for network virtualization in many cloud framework

We are using this approach and Openvswitch also to the physical
infrastructure.

How we use SDN (from OpenStack
perspective)

We use a Linux box for each site to “virtualize” the openstack LAN (Both management and

projects) and transport it to other sites.

SDN configuration

Remote Automation

The sites are L2 connected, every automatic
installation/configuration mechanism available on the master site
works out of the box on the remote sites.

The ansible playbook can easily be used on remote sites.

Start-up and Management requirements
(for the site Admin)

Start-up:

● Operating system installation on nodes with the public IP

● Nodes cabling

● Switch configuration (also from remote)

● Operating system installation on nodes

● Nodes network configuration on management VLAN

● Enable access to the Ansible server to the nodes

Management:

● Check on hardware failures

Current WorkFlows

Currently on this infrastructure we run different workflows.

For AMS:

● DODAS batch system
● HVO, a website on ASI exposed at PG

For FERMI:
● DODAS batch system

None of this workflows require effort from remote sites admin

Further possible development

More elements can be automated:

● Switches configuration (openflow or ansible)
● Openvswitch (or linuxbridge) via Ansible
● The Operating System installation on inner nodes.

It is possible to pack everything
in an appliance to extend an
OpenStack installation

Summary

We found an easy, net-centric, way to use remote resources

within our OpenStack installation.

The solution has low impact on the remote site admins because:

● It is a single OS installation

● It is build in a automated way

Backup slides

Bandwidth requirements

Traffic on the OS controller node:

AVG in: ~ 50 kBit/s/hwnode

AVG out: ~ 25 kBit/s/hwnode

Traffic on a DB/rabbitmq node:

AVG in: ~ 17 kBit/s/hwnode

AVG out: ~35 kBit/s/hwnode

100 Nodes ~ 7MBit/s

Some additional overhead from VM is also expected.

