

MACHINE LEARNING @ TORINO

Federica Legger, Sara Vallero

MOTIVATION

- Provide a MLaaS platform for students and researchers
- Yoga cluster used by students of PhD course on Big Data and ML, and a few research projects
 - 4D fast silicon timing
 - FTS log analysis
 - MR data for earth science
- Inspired by the SWAN service@CERN, details on infrastructure given by Sara
 - No production cluster, run on best effort basis

REQUIREMENTS FOR ML FRAMEWORK

Istituto Nazionale di Fisica Nucleare

- Run any ML algorithm of our choice in parallel
- Large datasets to be processed
- Multi-tenancy, so different users can request simultaneously ML pipelines
- An efficient resource management system for the cluster
- Support heterogeneous architectures
 CPUs, GPUs, ...

INFRASTRUCTURE: REQUIREMENTS

- Commodity hardware (CPUs)
- Non-dedicated and heterogeneous resources:
 - o Bare metal
 - 1 x 24 cores, 190 GB RAM
 - 4 x 28 cores, 260 GB RAM
 - IaaS Cloud (on premises)
 - 10 VM, 8 cores, 70 GB RAM
- Uniform application/service orchestration layer
 - -> Kubernetes
- High-throughput vs. high-performance -> Spark
- Distributed datasets -> HDFS
- Elasticity: allow to scale up if there are unused resources

ML BENCHMARK FOR SCALING TESTS

- Open HEP dataset @UCI, 7GB (.csv)
- Signal (heavy Higgs) + background
- 10M MC events (balanced, 50%:50%)
 - 21 low level features
 - pt's, angles, MET, b-tag, …
 - 7 high level features
 - Invariant masses (m(jj), m(jjj), …)

Technique	AUC					
	Low-level	High-level	Complete			
BDT	0.73 (0.01)	0.78 (0.01)	0.81 (0.01)			
NN	0.733 (0.007)	0.777 (0.001)	0.816 (0.004)			
DN	0.880 (0.001)	0.800 (< 0.001)	0.885 (0.002)			

Baldi, Sadowski, and Whiteson. "Searching for Exotic Particles in High-energy Physics with Deep Learning." Nature Communications 5

https://archive.ics.uci.edu/ml/datasets/HIGGS

ML MODELS

SCALING TESTS #1

- Optimize #cores per executor
- Model: MLLib MCP and GBT,1M events
- One machine t2-mlwn-01.to.infn.it
- In the 'literature' #cores
 = 5 is magic number to
 achieve maximum HDFS
 throughput

GBT slow, 1M, 1 executor, t2-mlwn-01

SCALING TESTS

1M, 1 executor

1M. 1 executor

cores/executor

core/executor

1M, 5

1M, 1

- #cores per machine
- #cores in homogeneous cluster

Strong scaling efficiency = time(1)/(N*time(N))

N = #cores

SUMMARY

- MLaaS cluster in use in Torino
- Infrastructure runs on 'opportunistic' resources
- Architecture can be 'reused' on OCCAM

BACKUP

SCALING TESTS #2

- Optimize #executors
- Model: MLlib MCP, 1M,10M events

MPC, 10M, 5 cores/executor, t2-mlwn-02

- #cores/executor = 5
- One machine

MPC, 1M, 5 cores/executor, t2-mlwn-01

SCALING TESTS #3

- Scaling on homogeneous resources
 - o bare metal, 4 machines with 56 cores and 260 GB

ML MODELS && LESSONS LEARNED

Model	AUC	time	# events	cores	note
MLLib GBT	82	15m	10M	25	Doesn't scale
MLLib MPC - 4 layers, 30 hidden units	74	9m	10M	25	Scales well, can't build complex models
Keras Sequential - 1 layer, 100 hidden units	81	18m	1M	25	No distributed training, cannot process 10M events
BigDL Sequential - 2 layers, 300 hidden units	86	3h15m	10M	88	1 core/executor required