

NAnoMAgnets for quantum Sensing and data SToragE (NAMASSTE)

Manuel Mariani, Davide Cicolari, Marta Filibian, Elio Giroletti, Alessandro Lascialfari, Lisa Rinaldi (Università degli Studi di Pavia, Pavia INFN Unit)

Participants - Pavia, Firenze and Milano Units		TE/year
Manuel Mariani – RU – UNIPV – PI	Pavia	0.5
Davide Cicolari – PhD – UNIPV	Pavia	0.3
Marta Filibian – Technician - UNIPV	Pavia	0.1
Elio Giroletti – Senior Member – INFN PV	Pavia	0.2
Alessandro Lascialfari – PO – UNIPV	Pavia	0.2
Lisa Rinaldi – PhD – UNIPV	Pavia	0.3 丿
Fabio Cinti – RTDB – UNIFI	Firenze	0.2
Maria Fittipaldi – RU – UNIFI	Firenze	0.4
Giuseppe Latino – PA – UNIFI	Firenze	0.2
Angelo Rettori – PA – UNIFI	Firenze	0.2
Lorenzo Sorace – PA – UNIFI	Firenze	0.3
Diego Redigolo – INFN FI	Firenze	0.1
Paolo Arosio – RTDB – UNIMI	Milano	0.4
Francesco Orsini – Technician – UNIMI	Milano	0.3 5 0.7

External Participant:

P. Santini – PO, Department of Mathematical, Physical and Computer Sciences, University of Parma

Pavia \rightarrow Unit 1Firenze \rightarrow Unit 2Milano \rightarrow Unit 3

A novel combination of experimental techniques: NMR + ESR + MuSR + SQUID + Magnetometry

- A. Synergical collaboration among Chemists and Experimental and Theoretical Physicists (Solid State Physics, Particle Physics)
- B. Goals for the project:
 - 1) experimental and theoretical investigation, of the spin dynamics and the magnetic relaxation mechanisms of metal ions-based Molecular Nanomagnets (MNMs)
 - 2) conceiving of new design principles for breaking record performances of MNMs to be used as magnetic memories for data storage
 - 3) selection of the **best MNM** to be used as **highly-sensitive quantum sensor** for the **detection of small interactions**, related to tiny perturbations due to external particles (e.g. α , β , neutrinos, Dark Matter, etc)

Molecular Nanomagnets (MNMs) (systems size of the order of nanometers):

- a) 3d Single Molecule Magnets (SMMs) (Mn₁₂, Fe₄)
- b) 4f Single Ion Magnets (SIMs) (Ln Zn and Ln tropolonato systems)

Characterized by:

- 1. regular crystalline structure with a magnetic core of a finite number ($n \ge 1$) paramagnetic centers (strong intramolecular exchange interactions)
- 2. molecules shielded by organic ligands \rightarrow weak intermolecular interactions
- 3. strong uniaxial anisotropy \rightarrow magnetic bistability (double-well energy levels)

Ground State Spin Configuration Easy Axis **Fe**₈ - $S_T = 10$ (giant spin) $Fe^{3+} s = 5/2$

*Magnetic Bistability in MNMs

- a. Progressive severe slowing down of **Magnetization** at intermediate temperature: $\tau = \tau_0 e^{\frac{\Delta E}{k_B T}}$ (10⁻⁸s < τ_0 < 10⁻¹⁰s)
- b. Quantum Tunneling of **Magnetization** at very low temperature: the energy of these transitions is lower than ΔE .

*Juan M. Clemente-Juan et al., Chem. Soc. Rev., 2012, 41, 7464–7478

- ac and dc magnetometry measurements versus temperature and magnetic field (2K < T < 300K, 0 < μ_0 H < 5T) Unit 1 and Unit 2
- Zero and high magnetic field wide-band NQR/NMR on ¹H and transition-metal nuclei as a function of temperature and magnetic field applied in the ranges 1.5K < T < 300K and $0.1T < \mu_0H < 9T$ respectively Unit 1
- Low-field and FFC wide-band ¹H NMR as a function of temperature and magnetic field applied (temperature range: 100K < T < 300K, field range: $0.0025T < \mu_0H < 0.25T$) Unit 3
- ESR measurements at variable frequency, as a function of temperature and magnetic field (range: 4.2K 300K and 0.1T 4T) Unit 2
- MuSR measurements in longitudinal and transverse configurations vs temperature and magnetic field applied (1.8K - 300K, 0 – 0.6T) at PSI facility - Unit 1 and Unit 3

- Starting from:
 - a) the detection of a spin flip avalanche in a crystal of MNMs after energy deposition due to radioactive event[#]
 - b) recent experiments* validating MNMs as sensors.
- Comparison of NMR, ESR and SQUID Magnetometry, results on MNMs in normal conditions and in presence of a radioactive source respectively, to:
 - a) increase overall the detection sensitivity (more sensitive techniques)
 - b) increase the temperature of use of MNMs as sensors (higher energy barriers and T_B)

- [#] P. C. Bunting, G. Gratta, T. Melia, S. Rajendran, *Phys. Rev. D* 95, 095001 (2017)
- * H. Chen, R. Mahapatra, G. Agnolet, M. Nippe, M. Lu, P. C. Bunting, T. Melia, S. Rajendran, G. Gratta and J. R. Long, arXiv:2002.09409v2 8

- WP1 Synthesis and first characterization of 3d SMM and 4f SIMs (participants: Unit 2 with feedbacks from Unit 1, Unit 3 and Paolo Santini) – Responsible: Unit 2
- WP2 Quantum memories: experimental study of spin dynamics and relaxation of SMM and 4f SIMs (Participants: Units 1, 2, 3) – Responsibles Unit 1 and Unit 2
- WP3 *Theory of the 3d SMMs and 4f SIMs relaxation* (participant: Unit 2 and Paolo Santini) – Responsible Unit 2
- WP4 Experimental study for the characterization of MNMs as particle quantum detectors (participants: Unit1 and Unit 2) – Responsible Unit 1

NAMASSTE – Expenses 2021

Pavia Unit (Unit 1)	
Expense	Amount (keuro)
Liquid Helium for NMR and SQUID Measurements	16
Low-Activity Radioactive Sources for Quantum Sensors Experiments	7.5
Missions for project meetings and MuSR/Joint Experiments	6
	29.5
Firenze Unit (Unit 2)	
Liquid Helium for ESR and SQUID Measurements	8
Liquid Nitrogen and Exchange Gas for ESR Measurements	1
Low-Activity Radioactive Sources for Quantum Sensors Experiments	7.5
Materials for Samples Synthesis	1.5
Instrumentation Maintenance	0.5
Other Consumables for Instrumentation	0.5
Purchase of PC for ESR Instrument	8.5
Missions for project meetings and Joint Experiments	3
	30.5
Milano Unit (Unit 3)	
Cooling Liquid Galden sv 110 for FFC NMR Instrument	1.5
NMR Sample Holders for NMR Measurements	0.5
Other Consumables	1
NMR Electronic Board for NMR Instrument	1.5
Variable Capacitors for NMR Instrument	1
Missions for project meetings and MuSR experiments	2.5
	8
	TOTAL
	68