FaLaPHEL

Fast Links and RadHard Front End with Integrated Photonics and Electronics for Physics

Call aperta

Area di ricerca: Elettronica

Resp. Naz: F. Palla Resp. Loc.: L. Gaioni

INFN Pavia, CDS, 14 Iuglio 2020

FaLaPHEL in a nutshell

• Goal of the project

- Improve the state of the art of high speed data links and mixed-signal readout circuits for future high rate pixel detector applications, and study the integration of these data links and of analog/digital front-end blocks in a prototype readout circuit.
- The project targets the tracker of the FCC-hh experiments with the opportunity to replace the inner pixel systems of the HL-LHC experiments in about 2032
- **INFN Units:** Padova, Pavia, Pisa
- External Units: Scuola Superiore S. Anna di Pisa, Dip. Ingegneria Informazione UniPisa, Dip. Fisica UniMilano
- **Duration**: 3 years

Next generation HEP detectors

• High-Luminosity LHC

- Increase of radiation levels
 - up to 6 MGy TID
 - up to $5 \times 10^{16} n_{eq}/cm^2$
- Large data rates
 - Aggregate of 60 Tb/s
- FCC-hh
 - 0.5- 50 x 10¹⁶ n_{eq}/cm²
 - 0.1 to 400 MGy
 - Huge data rates
 - ~6000 Tb/s outer tracker (untriggered)
 - 150 Tb/s (triggered @ 1 MHz)
 - pixel module 10 Gb/s/cm² (triggered @ 1 MHz)

State of the Art

LpGBT and Versatile Link +

- Based on 65 nm technology and VCSEL
- Total dose 2 MGy
- Total fluence 10¹⁵ n/cm²
 - cannot be used at HL-LHC below ~20 cm radius
 - implies RD53 chips needs e-links to LpGBT (~1 meter away)

- Silicon Photonics demonstrated to be sufficiently rad-hard (>10¹⁶ n/cm² and tested up to 300 Mrad)
- **PHOS4BRAIN (CSN5)** project showed 65 nm driver to to be rad-hard up to 8 MGy and reach ~5 Gb/s, limited by packaging (Aluminum wire bonds)

Goals of FaLaPHEL

- Hybrid (3D or 2.5D) integration of Silicon Photonics modulators with high speed radiation hard (≥10 MGy) electronics in 28 nm
- Aggregated 100 Gb/s links using wavelength division multiplexing (4 wavelength on a single optical fibre) and Integrated Front-End electronics

Table 1: Technology benchmarks and envisioned performance improvement with FALAPHEL

	State of the art – VCSEL+	This project (FALAPHEL)
Data rate	10 Gb/s	≥100 Gb/s
Radiation TID	200 Mrad (2 MGy)	≥1 Grad (10 MGy)
Total Fluence	10 ¹⁵ n/cm ²	>5 x 10 ¹⁶ n/cm ²

 Design and fabrication of a demonstrator

FALAPHEL

Challenges - I

• ASIC: CMOS 28 nm wrt 65 nm

- Allows to reach higher modulation speed at similar power consumption
- Similar or better radiation tolerance
- Parasitic effects may have more significant impact
 - requires optimisation and study of bonding pads and interconnects (Synergy with AIDAInnova)

• 28nm Front-End

- Expected very low thresholds at lower power (to be verified experimentally)
- **Photonics**: Ring vs Mach-Zehnder Modulators
 - RMs have smaller driving voltage than MZM (~1V vs 2V)
 - RMs can be tuned for different wavelengths allowing WDM
 - single optical fibre
 - RMs are more sensitive to temperature variations
 - need tune circuits

Challenges - II

- Hybrid assembly of two chips
 - **Parasitics:** 3D (flip chip) < 2.5D (interposer) < 2D (wire bonds)
 - Need careful thermal management (Synergy with AIDAInnova)
 - Interest to use DIAM (Development & Innovations on Additive Manufacturing) expertise (INFN Padova) on producing metallic additive manufacturing structures for heat removal

WP Structure

Table 3. Work Packages.

WP	Торіс	Leader	Unit	Areas of work
1	System Design	Luigi Gaioni	INFN Pavia	Demonstrator design, system specifications and key performance indicators
2	Silicon Photonics	Stefano Faralli	Scuola Superiore S. Anna of Pisa	PIC blocks, Ring-Resonator Modulator, MachZehnder Modulator, WDM and SDM
3	Electronics	Gianluca Traversi (focus FE) and Guido Magazzu (focus IP cores)	INFN Pavia INFN Pisa	Serdes, Driver, PLL/CDR, DAC, Bandgap, Front-End
4	EIC-PIC Integration	Sergio Saponara	University of Pisa	Packaging and integration, thermal studies, prototyping and fabrication
5	Radiation hardness	Serena Mattiazzo	INFN Padova	Tests with X-rays, Heavy lons, protons, neutrons
6	Project management and dissemination	Fabrizio Palla	INFN Pisa	Resource management, planning and coordination. Dissemination and exploitation of the results

Commitments for Pavia

- WP1 (System Design) defines the system specifications and key performance indicators (KPI) as inputs to WP 2 to 5 to outperform state of the art and benchmarking. Designs the final demonstrator together with WP4.
 - Who: L. Gaioni, V. Re, AdR#5
 - D1.1 System specifications and KPI
 - D1.2 Demonstrator design
- WP3 (Electronics) design of the fundamental rad-hard and high-speed electronics and test boards
 - Who: L. Ratti, G. Traversi, AdR#4, AdR#5
 - D3.2/3.2b Drivers and Tune circuit
 - D3.4/3.4b Front-End circuits
 - D3.5/3.5b DAC/Bandgap
 - D3.6 Final large area EIC submission
- WP5 (Radiation Hardness) will be in charge of the irradiation and radiation tolerance characterization of the EIC and PIC, and that of the integrated demonstrator
 - Who: E. Riceputi

Participants per research unit

 Table 5. List of participant Units with their leaders, FTE/year, number of members and designers

 (MEC: Mechanical; ELE: Electronic; PHO: Silicon Photonics).

Research Unit	Leader	FTE/year	Members	Designers
INFN Pisa	Fabrizio Palla	1.9 + 3 (AdR)	8 + 3 (AdR)	ELE: 3 + 2 (AdR) PHO:1 (AdR) MEC: 2
INFN Pavia	Luigi Gaioni	1.6 + 2 (AdR)	5 + 2 (AdR)	ELE: 5 + 2 (AdR)
INFN Padova	Serena Mattiazzo	1.55 + 1 (AdR)	7 + 1 (AdR)	ELE: 7 + 1 (AdR)
University of Pisa	Sergio Saponara	1.05	3	ELE: 2 ELE/PHO: 1
SSSA	Stefano Faralli	0.80	3	PHO: 3
University of Milan	Valentino Liberali	0.15	3	ELE: 2 PHO: 1

Participant list - Pavia

Name	Role	Unit	WP1	WP2	WP3	WP4	WP5	Total
L. Gaioni	ELE	INFN PV	40					40
L. Ratti	ELE	INFN PV			30			30
V. Re	ELE	INFN PV	10					10
E. Riceputi	ELE	INFN PV					50	50
G. Traversi	ELE	INFN PV			30			30
AdR #4	ELE	INFN PV			100			100
AdR #5	ELE	INFN PV	50		50			100

Participant list Others

Name	Role	Unit	WP1	WP2	WP3	WP4	WP5	Total					
M. Bagatin	ELE	INFN PD					15	15					
A. Candelori	ELE	INFN PD					20	20					
S. Gerardin	ELE	INFN PD					15	15					
S. Mattiazzo	ELE	INFN PD					20	20					
A. Paccagnella	ELE	INFN PD					15	15					
M. Teng	ELE	INFN PD					50	50					
D. Vogrig	ELE	INFN PD			20			20					
AdR #6	ELE	INFN PD					100	100					
L. Gaioni	ELE	INFN PV	40					40					
L. Ratti	ELE	INFN PV			30			30					
V. Re	ELE	INFN PV	10					10					
E. Riceputi	ELE	INFN PV					50	50					
G. Traversi	ELE	INFN PV			30			30					
AdR #4	ELE	INFN PV			100			100					
AdR #5	ELE	INFN PV	50		50			100					
F. Di Pasquale	PHO	SSSA		10		10		20					
S. Faralli	PHO	SSSA	5	20		10		35					
P. Velha	PHO	SSSA	5	10		10		25					
S. Cammarata	EIC/PHO	Univ. Pisa		20	10	10		40					
D. Monda	EIC	Univ. Pisa	10		30	10		50					
S. Saponara	EIC	Univ. Pisa			5	10		15					
				_				_					
L. Frontini	PHO	Univ. Milan		5	_			5					
V. Liberali	EIC	Univ. Milan	-		D			5					
A. Stablie	EIU	Univ. Milan	5					9					
			WP1	WP2	WP3	WP4	WP5	Total					
TOTAL			185	135	540	145	300	1305					

Budget

птем	WD		Year 1			Year 2			TOTAL		
	WP	PD	PV	PI	PD	PV	PI	PD	PV	PI	TOTAL
Travels		2	2	2	8	5	5	7	5	5	41
Irradiation and testing	5	0	0	0	6	3	3	6	3	3	24
Work between designers	6	1	1	1	1	1	1	0	1	1	8
General meetings / conferences	6	1	1	1	1	1	1	1	1	1	9
Consumables		5	32	89	15	32	119	15	65	25	397
EIC submission	3	0	17	34	0	17	34	0	50	0	152
PIC submission	2	0	0	25	0	0	50	0	0	0	75
Test boards EIC	3	0	5	10	0	5	10	0	5	0	35
Test boards PIC	2	0	0	0	0	0	5	0	0	5	10
X-ray tubes	5	0	0	0	5	0	0	5	0	0	10
Others (cables, fibers, glues, fluids,	1.2.3.	_			_			-			
powder, renting equipment)	4.5	5	10	20	5	10	20	5	10	20	105
Access to external irradiation facilities	5	0	0	0	5	0	0	5	0	0	10
External services		o	0	10	o	0	15	0	0	25	50
Demonstrator design and assembly	4	0	0	10	0	0	15	0	0	25	50
Licenses		o	0	8	o	0	1	0	0	1	10
PIC design	2	0	0	8	0	0	1	0	0	1	10
Equipment		0	20	35	o	0	0	0	0	0	55
FPGA	3	0	5	10	0	0	0	0	0	0	15
Power supply	3	0	5	0	0	0	0	0	0	0	5
Laser Source (DFB) x2	2	0	0	10	0	0	0	0	0	0	10
Workstations / HD / Screen	2	0	0	5	0	0	0	0	0	0	5
Workstations / HD / Screen	3	0	10	10	0	0	0	0	0	0	20
TOTAL w/o AdR		7	54	144	23	37	140	22	70	56	553
Assegni di Ricerca (AdR)		0	60	85	25	60	72,5	25	12,5	12,5	352,5
TOTAL		7	114	229	48	97	213	47	83	69	905,5

FALAPHEL

Assegni di Ricerca

Table 6. Requested AdR. Type: Junior (J) / Senior (S)

AdR #	Туре	Unit	Months	Research Topic
1	J	PI	30	PIC design and test. PIC-EIC integration and test
2	S	PI	24	Driver design. PIC-EIC integration and test
3	J	PI	18	PLL/CDR design and test
4	J	PV	30	DAC design and test
5	S	PV	24	FE design, test and integration in the demonstrator
6	J	PD	24	Irradiation tests and analysis

INFN Pavia services requests

NONE

Gantt chart

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Month		Jan	Feb	Mar	Apr	Ma	Jun	Jul	Aug	Sep	Oct	No	/ Der	Jan	Fet) Ma	Apr	Ma	yJun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Ma	Apr	Mar	Jun	Jul	Aug	Sep	Oct	Nov	Dec
WD4 (Oustons Desire)	spec/bench/ver																																				
wiri (System Design)	Demonstrators																																				
SHIDD (DIC)	PIC mini-block													Г	Γ																					\square	
WEZ (EIG)	PIC full-block																																				
	IP and FE 1st																																				
WP3 (EIC)	IP and FE 2nd																																				
	Final EIC																																				
WP4 (EIC-PIC	1st demo																																				
Integration)	final demo																																				
WP5 (Irradiation)																																					
WP6 (Project ma	nagement &																																				
dissemina	rtion)																																				
MILESTUNES			M1				M2				MB						M4		MS			M6				M7				MS			<u>M9</u>				MID
Deliverables			D1.1					D2,1			03.1	5					03.1	5 DS 1	01.2	02.2		04.1			05.1	03.6					D5.1	02.3	D4.1				D4.2
																																					D6.2

Legenda
Specifications/benchmark/verification
PIC design & layout
PIC fabrication
EIC design & layout
EIC fabrication
Integration test
Integration design
EIC-PIC Integration
EIC test
PIC test
Irradiation

Milestones

- M1 (Definitions of the specs and KPI) (T0+2)
- M2 (Silicon Photonics PIC design for the submission of the mini-block chip fabrication) (T0+6)
- M3 (1st submission of the High Speed rad-hard block design) (T0+10)
- M4 (2nd submission of the High Speed rad-hard block design) (T0+16)
- M5 (Final Silicon Photonics PIC design for the submission of the full block chip fabrication) (T0+18)
- M6 (First integration EIC+PIC) (T0+21)
- M7 (Final, large area EIC submission) (T0+25)
- M8 (Qualification of rad-hardness of PIC and EIC) (T0+29)
- M9 (Final demonstrator integration) (T0+32)
- M10 (Final demonstrator qualification) (T0+36)

Backup slides

Silicon Photonics Modulators

FALAPHEL

Driver in 65 nm TSMC technology

Driving voltage: above 1 V_{pp} for each arm of the MZM **Speed**: 5 Gb/s **Rad Tolerance**: HL-LHC compatible

Driver chip fabricated with PHOS4BRAIN by IMEC in 2018

FALAPHEL

Integration and measurement

- Electrical and optical measurements of the system are done in typical and irradiated conditions for the drivers characterisation.
- We used a MZM and RR fabricated by IMEC under CERN's design in ISIPP25G technology.

Results of the tests (Phos4brain)

ISIPP25 MZM + Driver

ISIPP25 RR + Driver

Driver chip directly bonded to the RR

