

A.F.V. CORTEZ, G. D'IMPERIO, G. DHO, E. BARACCHINI GRAN SASSO SCIENCE INSTITUTE & INFN

OUTLINE

- Objectives
- Simulation Results Internal Background
 - Camera body
 - Camera lens
- Conclusions and Future work

Objectives

Test technology underground with some shielding to verify we can supress the background as much as possible for the CYGNO 1 m3 detector -> Zero events inside the detector

Test the technology with some small shielding to have a significant number of neutrons interacting inside the detector, but with very few gammas -> Measure the neutron flux

From last presentation

we've seen that...

Due to practical reasons (space availability at LNGS) this might be a problem (depending on the internal background, in particular of the camera).

Simulations focused on the camera radioactive background which is the major source of unavoidable natural radioactivity.

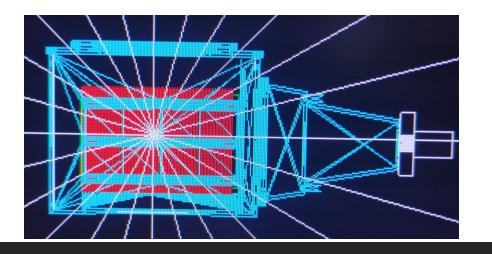
LIME Internal Background

LIME Internal Background

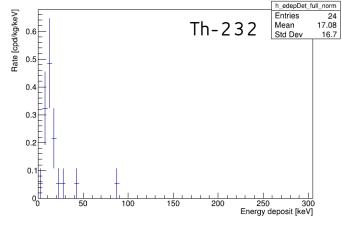
 Internal background of the camera body and lens measured at LNGS.

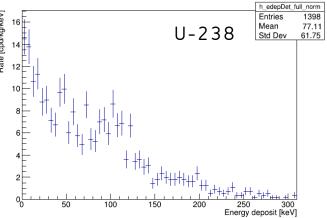
```
sample:
                camera, Hamamatsu, orca-flash4.0, 2.1275 kg, CYGNO
number:
                83383 s
live time:
detector:
                GeMPI
radionuclide concentrations:
Th-232:
Ra-228:
                (2.1 +- 0.2) Bq/pc
Th-228:
                (2.1 +- 0.1) Bg/pc
U-238:
Ra-226
                (1.8 +- 0.1) Bg/pc
Pa-234m
                (7 +- 2) Bq/pc
U-235:
                (0.4 +- 0.1) Bg/pc
K-40:
                (1.9 +- 0.3) Bq/pc
Cs-137:
                (0.09 +- 0.03) Ba/pc
Co-60:
                < 0.012 Bg/pc @ start of measurement: 12-JUL-2018
upper limits with k=1.645,
uncertainties are given with k=1 (approx. 68% CL);
Ra-228 from Ac-228;
Th-228 from Pb-212 & Bi-212 & T1-208;
Ra-226 from Pb-214 & Bi-214:
U-235 from U-235 & Ra-226/Pb-214/Bi-214
```

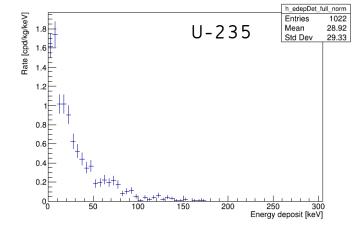
```
sample:
               objective of Hamamatsu orcaflash4.0, 213.5 g (with plastic cap), CYGNO
number:
live time:
               504104 s
detector:
               GePaolo
radionuclide concentrations:
Th-232:
Ra-228:
               (0.077 +- 0.009) Ba/pc
Th-228:
               (0.078 +- 0.006) Bg/pc
U-238:
               (0.41 +- 0.02) Bq/pc
Ra-226
Pa-234m
                (0.9 +- 0.3) Bg/pc
U-235:
               (0.031 +- 0.008) Bg/pc
K-40:
               (11 +- 1) Bq/pc
Cs-137:
               < 0.0057 Bg/pc
Co-60:
               < 0.0099 Bg/pc @ start of measurement: 10-JUL-2018
La-138:
               (0.52 +- 0.04) Bq/pc
upper limits with k=1.645,
uncertainties are given with k=1 (approx. 68% CL);
Ra-228 from Ac-228;
Th-228 from Pb-212 & Bi-212 & T1-208;
                                                      Main contributions
Ra-226 from Pb-214 & Bi-214;
U-235 from U-235 & Ra-226/Pb-214/Bi-214
                                                      identified.
```

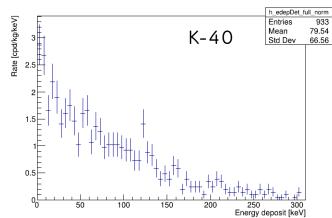

LIME Internal Background

- Internal Background Camera Body is originated mainly by:
 - Th-232 (0.98 Bq/kg)
 - U-238 (18.72 Bq/kg)
 - U-235 (0.188 Bq/kg)
 - K-40 (0.893 Bq/kg)

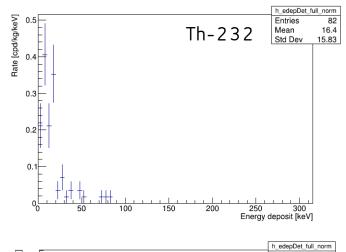

Simulations:

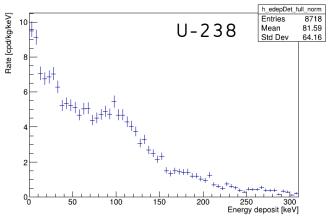

- 10M events per radioactive isotope
- Camera and Lens (treated separately)
- No shield

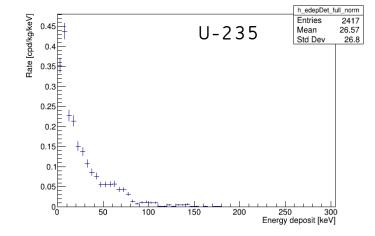

- Internal Background Camera Lens is originated mainly by:
 - Th-232 (0.726 Bq/kg)
 - U-238 (6.15 Bq/kg)
 - U-235 (0.145 Bq/kg)
 - K-40 (51.5 Bq/kg)
 - La-138 (2.44 Bq/kg)

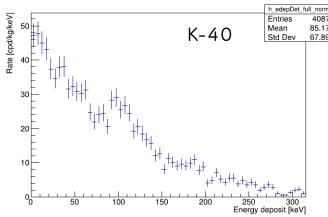


LIME Internal Background – Camera Body

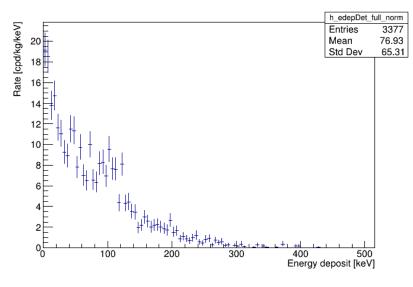




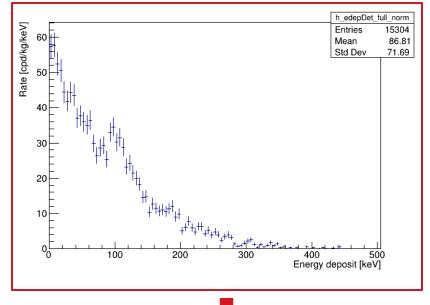

Camera body mass: 2.1272 kg


Isotope	Radioactivity	Counts [0-20] keV
Th-232	0.98 Bq/lkg	139
U-238	18.72 Bq/kg	6312
U-235	0.188 Bq/kg	676
K-40	0.893 Bq/kg	1178
Total	20.781 Bq/kg	8305

LIME Internal Background – Camera Lens

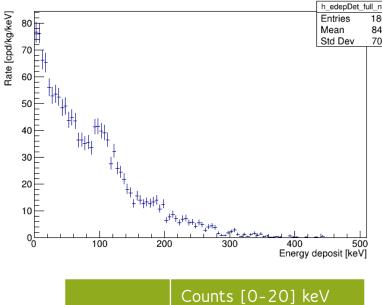


Camera ens mass: 0.2135 kg


Isotope	Radioactivity	Counts [0-20] keV
Th-232	0.726 Bq/kg	148
U-238	6.15 Bq/kg	4076
U-235	0.145 Bq/kg	154
K-40	51.5 Bq/kg	22961
La-138	2.44 Bq/kg	0
Total	60.961 Bq/kg	27339

LIME Internal Background – Camera body + lens

Energy deposit rate (Camera body)



Energy deposit rate (Camera lens)

Major radioactive source from the camera.

Energy deposit rate (Full camera)

Total 35644

Close to the goal 10^4 events/year

Conclusions and Future work

- Simulation of LIME internal background started;
- First results for the camera background without shielding completed;
- Values obtained suggest that we are close to the objective (close to 10⁴ events/year) full camera without shielding;
- Major source of the background is the camera lens (about ¾ of the entire background produced);
- Results seem to be in accordance with what is expected for CYGNO 1 m3 (about 10^6 events/year);
- Shielding for the camera body implemented for LIME;

- Re-do the simulation for the camera body with shielding (Cu) with different thicknesses
- Resume with the simulation of the GEM structure, field rings, cathode and support structures;
- Optimize the shielding considering the space available;

Thank you!