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• QFT is hard. It simplifies when there is a small parameter on which one 
can expand

The star example:  the semiclassical limit 

• Take

Z =

�
e� S

� , S =

�
d4x ��2 + ��4 . (1)

• Do � = �� 1
2 � to find

Z =

�
e� S

�� , S =

�
d4x ��2 + �4 . (2)

• For very small �� the saddle point approximation becomes exact.

• Moreover, one can systematically compute the corrections: perturbation
theory.



• This allows to access a “corner” of QFT. There is however a huge wild to 
explore. One way is to look for similar expansions on other parameters

Another star example:  the large N limit 

• Take

Z =

�
D�� e�S , S =

�
ddx ���2 + � (�� 2)2 . (1)

• Do a Hubbard-Stratanovich-like transformation

Z =

�
D�

�
D�� e�S , S =

�
ddx ���2 +

�
�� ��2 � �2

4
. (2)

• This may be re-written as

Z =

�
D�

�
D� e� S

N�1 , S =

�
ddx ��2+

�
�N

��
N

�2� �2

4N
. (3)

• So in the limit N � �, � � 0, g = N � = fixed we have another
semiclassical limit, this time with N�1 playing the role of �.



• Inspired by this, in search for semiclassical expansions to probe more 
corners of QFT’s, one may considering “cooking parameters” in which to 
expand


• There are greatly celebrated examples of this idea

• Suppose a family of operators labelled by some integer


• Such integer provides a new ``scale”, and in many cases its large value limit provides 
a new ``semiclassical” expansion

• Regge theory


• large spin expansions in CFT’s


• pp-wave


• …

Note that this may be a window into 
strong coupling dynamics!



• A natural and very universal candidate for such integer is a conserved 
charge


• Moreover, since fixed points play a pivotal role in QFT, we’ll concentrate 
on CFT’s: consider a CFT with a conserved charge and study the large 
charge sector of such theory


• Lots of recent progress along these lines 


• Today we’ll discuss some particular cases: we’ll probe large charge 
sectors of interesting CFT’s in a ``top-down” approach

• ``bottom-up” effective field theory approach


• ``top-down” case studies


• applications to SUSY systems


• …

A lot of recent activity: Hellerman, Maeda, Watanabe, Alvarez-Gaume, Or-
lando, Re�ert. . . . Apologies if references are missing!
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Correlation functions in N=2 and large charge

• N=2 theories are interesting playgrounds to tinker with QFT: they have 
SUSY enough so as to constrain dynamics to accessible limits but not too 
much so as to “trivialize”


• A lot of activity in recent times on N=2 theories (and relatives in other 
dimensions) 


• In particular, one can exploit SUSY to compute observables exactly

LOCALIZATION
This includes correlators, defect operators and even the partition function itself (meaningful for 4d N=2) 



CPO correlators through localization
• The 4d superconformal algebra contains 


• Hence an interesting shortening condition is


• This (together with being annihilated by S’s) defines Chiral Primary 
Operators (CPO’s)


• In lagrangian theories, CPO’s are composites of scalars in vector multiplets

{Q
a
�̇, S

b
�̇} = ��̇�̇�ab

�
� � R

2

�
+ �abM�̇�̇ + ��̇�̇Jab

[Q
a
�̇, O] = 0 � �O =

RO

2
, jL = s = 0, (and jR = 0)

[Q1
�, O] = [Q

1
�̇, O] = 0

For completeness: another natural shortening condition is


This corresponds to operators on the Higgs branch (hypermultiplets, in lagrangian theories)



• CPO’s have a non-singular OPE (not to violate the BPS bound). As a 
consequence, they form a ring: the chiral ring


• Their correlation functions are


• SUSY implies that


• We will be interested on 2-point functions of extremal correlators

�OI(0)OJ(x)� =
gIJ(� i, � i)

|x|2�I
��I ,�J

�O1(x1) · · · On(xn)O(�)� = lim
xi�x

�O1(x1) · · · On(xn)O(�)� =

C
��

1
�1�2

C
��

2

��
1�3

· · · C��
n�1

��
n�2�n

g��
n�1�y

Endowes the Coulomb branch of a very 
interesting geometry…but that’s another story. 
See Papadodimas; Baggio, Niarchos & 
Papadodimas



• The 2-point functions can be mapped to the sphere


• To extract C, we can take the large x limit


• Since


• …it follows that 

ds2
R4 =

�
1 +

|x|2

4

�4
ds2

S4

�A(x)B(0)� =
CAB

|x|2�A
��A�B � �|x|2�AA(x)B(0)� = CAB��A�B

lim
|x|��

|x|2�AA(x) = 4�A lim
|x|��

�
1 +

|x|2

4

��A

A(x)

4�A�A(N)B(S)�S4 = CAB



• It turns out that, due to the very special SUSY properties of CPO’s, upon 
deforming the theory by


• …the correlation functions are


• There is one subtlety, though: due to the conformal anomaly there can be 
mixing


• To remove this mixing, one has to run a Gram-Schmidt orthogonalization 
(to recover the delta in dimensions in the correlator!)

� 1

32�2

�
d4x

�
d4� E

�

I

�I OI
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��I ��J

Z̃(S4)
���
�I=0 (I �=Y M)

= �A(N)B(S)�S4

Gerchkovitz, Gomis, Ishtiaque, Komargodski & Pufu, 1602.05971
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• For N=4 write the sphere operators as 


• Fixing m, the correlators group into separate Toda chains


• For N=2 (superconformal) SQCD these chains are not obviously 
decoupled 

O(m)
n = (Tr�2)n

�

n2=0

(Tr�k)nk = �n
2 O(m)

Bourget, R-G & Russo, 1810.00840

• Recall that the GS is needed because the sphere supplements a scale which allows mixings


• Using this, it is possible to come up with an ordering for the GS such that one finds families of decoupled Toda 
chains


• This typically requires mixing coefficients proportional to positive powers of R: not clear what the flat space limit is


• For N=4 things arrange such that these terms are absent (and one recovers the decoupled Toda chains)

16 ����̄ log G(m)
2n =

G(m)
2n+2

G(m)
2n

� G(m)
2n

G(m)
2n�2

� G(0)
2



• One can nevertheless simply compute the lowest correlators by brute force. 


• The simplest ones are                . They can be computed from derivates of Z 
wrt. the coupling (because they correspond to “insertions of the action”!)


• One finds


• The polynomial in n multiplying each order in the coupling is just the 
appropriate so as to define the double scaling limit  (at FIXED N!)          

On = (Tr�2)n

In equation (2.18) we have introduced a coefficient

α =
1

2
dim(g) . (2.20)

for each gauge algebra g. For instance, αu(N) = N2

2 and αsu(N) = N2−1
2 . Interestingly (and

for any g), the coefficient α can be expressed in terms of the central charges a, c of the
theory [28]:

α = 4a− 2c . (2.21)

Note that equation (2.18) essentially follows from the Imτ dependence of the partition
function of N = 4 SYM with gauge algebra g = u(N), su(N). Hence it directly extends

to any gauge algebra G. Therefore, equation (2.18) generalizes the result for GN=4,su(N)
2n of

[15] to any gauge algebra g.
Let us now turn to the case of superconformal QCD. Substituting (2.17) into (2.7) we

find4

GQCD
2n

GN=4
2n

= 1−
9n (N2 + 2n− 1) ζ(3)

4π2 (Imτ)2
(2.22)

+
5n (2N2 − 1) (3N4 + (15n− 3)N2 + (20n2 − 15n+ 4)) ζ(5)

4π3N (N2 + 3) (Imτ)3
+ · · · .

As a check, one can verify that these expressions satisfy the Toda equation (obviously, in
the case of superconformal QCD up to the relevant order in the perturbation series).

We now notice a key feature: the structure of the two and three-loop terms (2.22)
suggests a general structure of the schematic form:

F (n, g) ≡
GQCD

2n

GN=4
2n

= 1 +
∞
∑

k=2

Pk(N, n) g2k , (2.23)

where Pk(N, n) is a polynomial of degree k in n:

Pk(N, n) =
k

∑

r=1

fr(N)nr . (2.24)

The fact that the coefficient of the k-loop contribution to the correlator be a polynomial of
degree k in n is by no means a priori obvious and it is crucial for the existence of a double-
scaling limit discussed below. In section 4 we will explicitly check that this structure holds
up to (and including) five loops. In the appendix we prove that this structure holds to all
order in the perturbation series.

Note that, for n = 0, one must have F ≡ 1, so there is no n0 term in the polynomial
Pk(N, n). Another important feature is that the term which is dominant in the large N

4We omit the label su(N) to indicate the gauge algebra (note that N = 2 superconformal QCD is only
defined for su(N)). In this ratio, GN=4

2n corresponds to the N = 4 theory with su(N) gauge algebra.
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Zinst stands for the instanton contribution, computed by the Nekrasov instanton partition
function with equivariant parameters ϵ1 = ϵ2 = 1/R, where R is the radius of the 4-sphere
(throughout we set R = 1).

We will be interested in the perturbation series in the zero-instanton sector. Then we
will take the weak coupling limit Imτ → ∞, where instanton contributions vanish (more
on this below). Thus, in what follows, we set Zinst → 1 in (2.13).

The perturbation series is generated by using the Taylor expansion of logH ,

logH(x) = −
∞
∑

n=2

(−1)n
ζ(2n− 1)

n
x2n , (2.15)

which converges for |x| < 1. Then, expanding the integrand, the different terms can be
viewed as vacuum expectation values of products of Trφn =

∑

i a
n
i operators in the N = 4

theory. This procedure was explained in [20]. Up to three loop order, O(g6), we find

Zsu(N)
QCD = Zsu(N)

N=4

{

1− 3ζ(3)⟨Trφ2Trφ
2
⟩N=4
S4

−
2

3
ζ(5)

(

10⟨Trφ3Trφ
3
⟩N=4
S4 − 15⟨Trφ4Trφ

2
⟩N=4
S4

)

+ · · ·
}

, (2.16)

where ⟨TrφnTrφ
m
⟩N=4
S4 refers to the 2-point function of the Trφn, Trφ

m
operators in the

su(N) N = 4 SYM matrix model on the S4. As shown in appendix A, the correlators in the
su(N) theory can be computed in terms of the u(N) Gaussian matrix model. (i.e., in terms
of correlators of N = 4 SYM but with gauge algebra u(N)). Combining all ingredients,
we finally find

Zsu(N)
QCD = Zsu(N)

N=4

{

1−
3 (N4 − 1)ζ(3)

16π2 (Imτ)2
+

5 (N4 − 1) (2N2 − 1)ζ(5)

32N π3(Imτ)3
+ · · ·

}

. (2.17)

The two-loop term with coefficient ζ(3) was found in [20], while the three-loop term with
coefficient ζ(5) in the general su(N) theory is new.

2.3 G2n in N = 4 SYM and N = 2 superconformal QCD

We can now compute G2n both in u(N) N = 4 SYM and in su(N) N = 4 SYM by simply
substituting (2.11) into (2.7). We find

GN=4,g
2n =

n! 22n

(Imτ)2n
α (1 + α)n−1 , (2.18)

where we have used the standard notation for the Pochhammer symbol,

(x)n =
Γ(x+ n)

Γ(x)
. (2.19)
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In equation (2.18) we have introduced a coefficient

α =
1

2
dim(g) . (2.20)

for each gauge algebra g. For instance, αu(N) = N2

2 and αsu(N) = N2−1
2 . Interestingly (and

for any g), the coefficient α can be expressed in terms of the central charges a, c of the
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α = 4a− 2c . (2.21)
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to any gauge algebra G. Therefore, equation (2.18) generalizes the result for GN=4,su(N)
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[15] to any gauge algebra g.
Let us now turn to the case of superconformal QCD. Substituting (2.17) into (2.7) we
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9n (N2 + 2n− 1) ζ(3)
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+
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As a check, one can verify that these expressions satisfy the Toda equation (obviously, in
the case of superconformal QCD up to the relevant order in the perturbation series).

We now notice a key feature: the structure of the two and three-loop terms (2.22)
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F (n, g) ≡
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= 1 +
∞
∑
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Pk(N, n) =
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degree k in n is by no means a priori obvious and it is crucial for the existence of a double-
scaling limit discussed below. In section 4 we will explicitly check that this structure holds
up to (and including) five loops. In the appendix we prove that this structure holds to all
order in the perturbation series.

Note that, for n = 0, one must have F ≡ 1, so there is no n0 term in the polynomial
Pk(N, n). Another important feature is that the term which is dominant in the large N
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limit is not the highest power of n.5 This is seen explicitly in (2.22) and it implies that
the N = ∞ limit and the n = ∞ limit do not commute. Each limit selects a different
term in Pk(N, n). The standard large N , ’t Hooft limit, if taken after the large n, double-
scaling limit is taken, will give a trivial result for the correlators (as expected for multitrace
operators).

3 Large R-charge limit for multitrace operators

The structure (2.23), (2.24) of the G2n correlator for superconformal QCD, if it subsists to
all orders in the perturbation series, suggests a possible limit where we take

n → ∞ , g → 0 , λ ≡ g2n = fixed , (3.1)

with fixed N . We stress that the rank of the group is arbitrary and fixed (for example, it
may be N = 2).

In this limit, the correlator reads

F (n, g) → F∞(λ) ≡ lim
n→∞

GQCD
2n

GN=4
2n

= 1−
9 λ2 ζ(3)

32π4
+

25 (2N2 − 1) λ3 ζ(5)

64 π6N (N2 + 3)
+ · · · (3.2)

The limit thus leaves a perturbative series

F∞(λ) =
∞
∑

k=0

ckλ
k , (3.3)

where the ck are numerical, finite coefficients involving ζ-functions.
As anticipated above, now taking the N = ∞, ’t Hooft limit in (3.2) gives a trivial

result, F∞ → 1 (recall that λ = g2n → 0 in the ’t Hooft limit, with g2N fixed). This
implies that the Feynman diagrams contributing to the n → ∞ limit are non-planar.

As for the instanton corrections, these are weighted by e
− 1

g2 ∼ e−
n
λ . Thus, in the large

n limit for fixed (finite) λ, such corrections are expected to be exponentially small. Note
that, as opposed with the standard ’t Hooft limit, where it is the gauge algebra rank what
goes to infinity, here it is an “external parameter”. In particular, the size of the instanton
moduli space does not scale with n, and hence it seems guaranteed that instantons do not
contribute.

The scaling limit that we are taking is similar in spirit to the large charge limit intro-
duced in [2], since we are considering operators with large (R-symmetry) charge for which a
simplification occurs. In the present case we have a double-scaling limit, since the relevant
expansion parameter is λ = g2n.6

5The largeN limit of correlation functions of CPO’s of the form (2.3) has been studied in [19, 20, 21, 22].
6We are grateful to Simeon Hellerman for useful conversations on this point.
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Bourget, R-G & Russo, 1803.00580(Gauge instantons truly supressed!)



• Going beyond this tower by explicit computation is very hard. The next 
simplest case is SU(3): there is only one more CPO. Explicitly computing the 
correlators (heavy use of Toda chain!) shows that the limit continues to exist


• It turns out that the existence of the limit is rooted in the structure of the 
correlators: the GS can be recasted as a matrix model

Beccaria, 1809.06280
Beccaria, 1810.10483

• Very sketchy: for SU(2) there is only one CPO, whose sphere correlators are derivatives of Z 
wrt. the coupling. The flat space correlators are rations of subdeterminants of the matrix of 
derivatives


• It turns out that each such subdeterminant can be written as a matrix integral: convert the 
computation of correlators into a matrix model!


• The ’t Hooft limit of this matrix model is well defined: it is our double scaling limit (strictly 
speaking, the latter is the weak ’t Hooft coupling regime)

Note that while the expansion in the coupling constant is only asymptotic, the inte-

grals (3.4) are convergent and hence lead to a well-defined answer.

We are interested in the large n limit of the extremal correlators G2n, which in-

volves taking ratios of increasingly large determinants. A convenient way to think about

this problem is through the Andréief identify (sometimes also called the Gram or Heine

identity), which can be stated in generality as follows: Given two sets of N functions

{fk(y); gk(y)}
N�1
k=0 and a measure dµ(y) we have

Z N�1Y

j=0

dµ(yj) det
ab

(fa(yb)) det
cd

(gc(yd)) = N ! det
ab

Z
dµ(y)fa(y)gb(y) (3.5)

where a, b, c, d all range on 0, . . . , N � 1. Roughly speaking, the identity relates a determi-

nant of integrals to a multivariate integral over determinants.

This identity can be readily applied to (3.4) by identifying dµ(y) $ dae�4⇡ Im ⌧a
2

a2Z1-Loop(a),

and by identifying fk(y) $ a2k and gk(y) $ a2k. Another useful identity is the standard

Vandermonde determinant

det
ab

(yba) det
cd

(ydc ) =
Y

j<k

(yj � yk)
2 . (3.6)

Using all these ingredients we can then rewrite the determinants of (3.4) as

detM(n) =
1

n!

Z n�1Y

j=0

dyje
�4⇡ Im ⌧y

2
j y2jZ1-Loop(yj)

Y

j<k

(y2j � y2k)
2 . (3.7)

The integrals over the variables yj are over (�1,1). It is convenient to convert them into

integrals over the half line y2j = xj, in terms of which we obtain

detM(n) =
1

n!

Z
1

0

n�1Y

j=0

dxje
�4⇡ Im ⌧xjx

1
2
j
Z1-Loop

�p
xj

�Y

j<k

(xj � xk)
2 . (3.8)

This form has the advantage that the factor
Q

n�1
j=0 (xj � xk)

2 is readily recognized as the

usual repulsion terms between the eigenvalues of a matrix.

The problem of computing the n⇥n determinants, and hence the extremal correlators,

therefore reduces naturally to the problem of random n ⇥ n matrices with the ensemble

weight determined by the integrand of the four-sphere partition function. In the original

problem of computing the four-sphere partition function and the extremal correlators we

20

Grassi, Komargodski & Tizziano, 1908.10306
Beccaria, Galvagno & Hasan, 2001.06645

(note that in any case, gauge instantons are safely supressed in this regime)



Large charge in WF
• The mere existence of the previous limit is somewhat surprising. One can 

wonder wether a toy model version exists. The natural candidate is


• This theory has a U(1) symmetry


• Below 4d it has an IR fixed point

� � ei� �

d = 4 � � � gWF =
16�2

5
�

S =

�
|��|2 +

g

4
|�|4



• In d=4 the theory is free. The natural (charged) operators are


• Let’s compute their 2-point functions in (standard) perturbation theory. To 
leading order


• To second order


• As n grows, there are many more “kermit diagrams”

On = �n

...

...

!

...

Figure 2: The relevant one-loop diagram and its Kermit the frog representation.

...

...

...

...

...

...
...

Figure 3: Four topologies contributing at order O(g2).

Now consider the general m-loop diagram with m vertices. The lines in each vertex
can go either to another vertex or join some of the n lines of the operators φn or φ̄n. The
diagram which has a smaller number of lines that do not undergo interactions is when
two lines of each vertex join two of the n lines of the operator φn and the other two lines
join two of the n lines of the operator φ̄n (it is not possible to have three lines of the
vertex joining three lines of the operators φn because of charge conservation; vertices are
of the form φφφ̄φ̄). This corresponds to the iteration of the Kermit diagram and has a
combinatorial factor n!2/(n− 2m)! which has the highest power of n (see (3.1) and below
for the derivation of the combinatorial factor at m loop order including other symmetry
factors).

Thus, we conclude that a class of diagrams dominate the correlation function, the m-
loop Kermit diagrams of fig. 4. Denoting by Km the contribution from the Kermit diagram
with m interaction vertices, the correlator is

⟨On(x) Ōn(0)⟩ = n!
∑

m=0

(−ig)mKm
1

4m
n!

(n− 2m)!

1

m!
. (3.1)

The combinatorial factor can be understood from fig. 4. There are n lines on each side,
giving rise to a factor (n!)2 obtained by permutations. Then one must divide over the
number of permutations that lead to equivalent configurations. There is a factor 1/(n−2m)!
associated with the permutations of the n−2m lines that do not undergo interaction. There
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• Counting only these, one finds


• In large n                                          , so


• …so the result of the 1-loop exponentiates! In the end, it boils down to computing


• Using real space renormalization, one finally finds
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⟨On(x) Ōn(0)⟩ = n!
∑

m=0

(−ig)mKm
1

4m
n!

(n− 2m)!

1

m!
. (3.1)

The combinatorial factor can be understood from fig. 4. There are n lines on each side,
giving rise to a factor (n!)2 obtained by permutations. Then one must divide over the
number of permutations that lead to equivalent configurations. There is a factor 1/(n−2m)!
associated with the permutations of the n−2m lines that do not undergo interaction. There
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Figure 4: Diagrams contributing to ⟨On(x) Ōn(x)⟩ at large n.

is also a factor 1/2m on each side associated with the permutations of the pair of lines in
the m loops. The factor 1/m! originates from the expansion of the exponential of the
interaction term.

Using the de Moivre-Stirling formula, for n ≫ 1 one obtains

n!

(n− 2m)!
≈ n2m , n ≫ 1 . (3.2)

Therefore we can define the limit

n → ∞ , g → 0 , λ = g n2 = fixed . (3.3)

The correlator then becomes

⟨On(x) Ōn(0)⟩ = n!
∑

m=0

Km

(−iλ

4

)m 1

m!
. (3.4)

To further proceed, note that, in position space, the Kermit diagram Km is

Km = G(0, x)n−2m
m∏

i=1

∫
d4zi G(0, zi)

2G(zi, x)
2

= G(0, x)n
( 1

G(0, x)2

∫
d4z G(0, z)2 G(z, x)2

)m
, (3.5)

where G(x, y) is the propagator of the φ field. Thus

⟨On(x) Ōn(0)⟩ = n!G(0, x)n
∑

m=0

(−iλK
4

)m 1

m!
, (3.6)

with

K =
1

G(0, x)2

∫
d4z G(0, z)2 G(z, x)2 . (3.7)

Since n!G(0, x)n = ⟨On(x)On(0)⟩0 is the correlation function in the free theory, and the
sum can be trivially resumed, we find

7

⟨On(x) Ōn(0)⟩ = ⟨On(x) Ōn(0)⟩0 e−i λK

4 . (3.8)

Next, consider the computation of K, which is carried out in the appendix. Note that K
represents the O(g) correction to the O2 correlator. We have

K = − i

8 π2
log(Λ2x2) . (3.9)

As a cross-check of this result, one can see that in the N = 1 case, and upon appropri-
ately taking into account numerical conventions, this yields the correct O(g) anomalous
dimension of the On operator (cf. for example [26]).

Thus

⟨On(x) Ōn(0)⟩ = ⟨On(x) Ōn(0)⟩0
1

|x|
λ

16 π2

. (3.10)

Since in position space

G(0, x) =
1

4 π2

1

|x|2 , (3.11)

we finally find

⟨On(x) Ōn(0)⟩ =
n!

(4 π2)n |x|2 (n+
λ

32π2 )
. (3.12)

In particular, this gives the following formula for the dimension of the On operator in the
double scaling limit

∆On
= n+

λ

32 π2
. (3.13)

3.2 Saddle-point derivation

The underlying reason behind the existence of a large charge limit can be understood
from a saddle-point calculation. It is convenient to rescale the scalar field and define new
variables

σ = g
1
4 φ , σ̄ = g

1
4 φ̄ . (3.14)

The correlator is then given by

⟨On(x1) Ōn(x2)⟩ =
1

g
n

2Z

∫
DσDσ̄ e−S , (3.15)

where the Euclidean action, including source terms, is given by

S =

∫
d4x

(
g−

1
2∂σ̄ ∂σ +

1

4
(σ̄σ)2 − nδ(x− x1) log σ − nδ(x− x2) log σ̄

)
. (3.16)
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n!

(n � 2m)!
� n2m � gn2 = �

Arias-Tamargo, R-G & Russo, 1908.11347



• This can be understood from a (deeper) perspective


• The 2-point functions we are interested on can be written through a path 
integral as


• Raising the insertions to the exponent


• …but the field is a dummy integration variable 

�On(x1) Ō(x2)� =

�
�(x1)

n �̄(x2)
n e�S

emergence of the double-scaling limit
Arias-Tamargo & R-G, Russo, 1908.11347
Badel, Cuomo, Monin & Rattazzi, 1909.01269
Watanabe, 1909.01337

n � �, g � 0, gn = � = fixed

�On(x1)Ō(x2)� =

�
e�nSeff , Se� =

�
|��|2 +

gn

4
|�|4 � �(x � x1) log � � �(x � x2) log �̄

�On(x1)Ō(x2)� =

�
e�Seff , Se� =

�
|��|2 +

g

4
|�|4 � n �(x � x1) log � � n �(x � x2) log �̄

(� =
�

n�)



• This suggests that the ``free energy” has a double expansion


• 1/n plays the role of Planck’s constant. The leading term in the sum is the 
classical trajectory


• However, in terms of “the true Planck constant” this classical approximation 
is fully quantum (resums an infinite number of corrections)


• Note that the field gets a VEV of order

log�On(x1)Ō(x2)� = n
�

k=0

n�k �k(�)
Badel, Cuomo, Monin & Rattazi, 1909.01337

�
n

• It is natural to guess that something similar happens in SQCD.


• But there such VEV puts is in the Coulomb branch. The masses are


• So in the gauge theory we expect W/hypers to dominate the limit (specially at weak ’t Hooft coupling)

mmonopole � �

gY M
�

�
n

gY M
� n�

�
mW/hyper � � gY M �

�
n gY M �

�
�



• Large n defines a new “semiclassical expansion” (for a sector of the theory). 
The saddle point equations are


• At weak ``’t Hooft coupling” we can solve these perturbatively


• Plugging this back into the action we find
Hellerman & Maeda, 1710.07336

�2� +
�

2
� |�|2 = ��(x � x2)

1

�̄
�2�̄ +

�

2
�̄ |�|2 = ��(x � x1)

1

�

�2� = ��(x � x2)
1

�̄

�2�̄ = ��(x � x1)
1

�

� =
G(x � x2)�
G(x1 � x2)

�̄ =
G(x � x1)�
G(x1 � x2)

�On(x1)Ō(x2)� = G(x1 � x2)
n e

� � n
4

1
G(x1�x2)2

�
ddx G(x�x1)

2 G(x�x2)
2



• In the exponent we recognize the 1-loop diagram which we had before


• The result is then


• We may write

...

...

!

...

Figure 2: The relevant one-loop diagram and its Kermit the frog representation.

...

...

...

...

...

...
...

Figure 3: Four topologies contributing at order O(g2).

Now consider the general m-loop diagram with m vertices. The lines in each vertex
can go either to another vertex or join some of the n lines of the operators φn or φ̄n. The
diagram which has a smaller number of lines that do not undergo interactions is when
two lines of each vertex join two of the n lines of the operator φn and the other two lines
join two of the n lines of the operator φ̄n (it is not possible to have three lines of the
vertex joining three lines of the operators φn because of charge conservation; vertices are
of the form φφφ̄φ̄). This corresponds to the iteration of the Kermit diagram and has a
combinatorial factor n!2/(n− 2m)! which has the highest power of n (see (3.1) and below
for the derivation of the combinatorial factor at m loop order including other symmetry
factors).

Thus, we conclude that a class of diagrams dominate the correlation function, the m-
loop Kermit diagrams of fig. 4. Denoting by Km the contribution from the Kermit diagram
with m interaction vertices, the correlator is

⟨On(x) Ōn(0)⟩ = n!
∑

m=0

(−ig)mKm
1

4m
n!

(n− 2m)!

1

m!
. (3.1)

The combinatorial factor can be understood from fig. 4. There are n lines on each side,
giving rise to a factor (n!)2 obtained by permutations. Then one must divide over the
number of permutations that lead to equivalent configurations. There is a factor 1/(n−2m)!
associated with the permutations of the n−2m lines that do not undergo interaction. There
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�On(x1)Ō(x2)� =
1

|x1 � x2|2�
, � = n (1 +

�

32�2
+ O(�2))

� = n +
gn2

32�2
+

�
ci gi ni+1 = n +

�

32�2
+

1

n

�
ci �i � n +

�

32�2

The strict large n, extreme weak coupling limit  selects the first 
correction, which is what the diagramatic computation captures



• We can also compute higher point functions of large charge operators, at 
least perturbatively in the “’t Hooft coupling”. Consider 


• The path integral representation is


• so the analogous double scaling limit exists

��(x1)
n1 · · · �(xr)

nr �̄(y1)
m1 · · · �̄(ys)

ms� ,
�

ni =
�

mi

��(x1)
n1 · · · �(xr)

nr �̄(y1)
m1 · · · �̄(ys)

ms� =

�
e�nSeff

Se� =

�
|��|2 +

�

4
|�|4 �

r�
�(x � xi) log � �

s�
�(x � xi) log �̄

This result can also be derived by a saddle-point evaluation of the two-point function,
which becomes exact in the double scaling limit with fixed λ = gn2 [4].

In the double-scaling limit of [4] at fixed λ, the O
(

λ̂2
)

terms are given by Feynman
diagrams which are suppressed by powers of 1/n. Thus, from this point of view, the result
(4) can be viewed as the leading term of the more general double expansion in n, λ̂.

Large charge expansions also exist in general CFT’s with a marginal coupling. An
example of a CFT depending on an exactly marginal parameter gYM is N = 2 supersym-
metric four-dimensional QCD with gauge group SU(N) and 2N fundamental flavors. The
large charge limit of this theory was first introduced in [11] and studied using supersym-
metric localization. Localization leads to exact formulas for a special class of correlation
functions of superconformal chiral primary operators, called “extremal correlators”. These
are correlation functions with an arbitrary number of insertions of operators Trφn and
only one insertion of Tr φ̄n and they enjoy special properties because of supersymmetry (φ
being the adjoint scalar in the vector multiplet of unit R-charge). It was shown that the
perturbative expansion of correlators of (Trφ2)n has a well-defined large n limit provided
one takes a double-scaling limit of large n and fixed g2YM n. This limit ensures that all terms
in the perturbative expansion are finite and non-vanishing. Further aspects were studied
in detail in [12, 13]. Subsequently, the existence of a double-scaling limit was understood
in terms of a “hidden” matrix model description in [14].

The mere fact that it is possible to compute observables of a QFT in a closed form in the
large charge sector is remarkable per se. Motivated by this, in this paper, we study higher
point functions in the O(2) theory in the sector of operators with large charge. Focusing
in the weak coupling regime in the double expansion in 1/n, λ̂, we compute “extremal”
correlators (of the form ⟨φn1 · · ·φnr φ̄m⟩) as well as 4-point functions in the “non-extremal”
case. As discussed above, in the double scaling limit, these results become exact. We shall
use the saddle point method employed in [4].

2 Higher point functions in the O(2) model

We will follow the approach of [4], where the two-point function was computed in a double-
scaling limit, n → ∞, g → 0 at fixed g n2 ≡ λ. This limit yields the exact exponentiation of
the the leading non-trivial term in the more general n, λ̂ expansion in the large n and weak
λ̂ regime. In the case of higher-point functions, we are interested in general correlation
functions of the form

⟨φ(x1)
n1 · · ·φ(xr)

nr φ̄(y1)
m1 · · · φ̄(ys)ms⟩ ,

r
∑

i=1

ni =
s
∑

j=1

mj . (5)

We will assume the following scaling

ni = ain , mj = bjn , g → 0, n → ∞ , gn2 = fixed ,

and fixed ai, bj . In the case of the two-point function ⟨φ(x)nφ̄(y)n⟩, it was shown in [4] that
in the double-scaling limit all higher loop diagrams vanish except those with a particular
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• For “extremal correlators” 


• For more general correlators things are more complicated. Concentrate on 4-
point function (only extremal and one non-extremal)

xi

xj

y
...

xi

xj

y
...

Figure 1: Types of diagrams that contribute to the extremal correlators.

being µ is a reference mass scale, which in what follows will be set to one (see comments
in appendix A).

Combining the free and the interacting part, we finally obtain

⟨φ(x1)
n1 · · ·φ(xr)

nr φ̄(y)m⟩ = m!

(4π2)m
∏r

i=1 |xi − y|2(ni+
λ aib

32π2
) ∏r

i<j |xi − xj |−
λ ai aj

16 π2

. (17)

We can now check that this structure is consistent with the expected structure dictated by
conformal symmetry. Consider first the particular case of the three-point function, that
is, r = 2. With no loss of generality, we can set y = 0. The result can be written in the
equivalent form

⟨φ(x1)
n1φ(x2)

n2 φ̄(0)m⟩ = m!

(4π2)m|x1|∆1+∆̄−∆2 |x2|∆2+∆̄−∆1|x1 − x2|∆1+∆2−∆̄
, (18)

where m = n1 + n2 and

∆1 = n1 +
λa21
32π2

, ∆2 = n2 +
λa22
32π2

, ∆̄ = (n1 + n2) +
λ(a1 + a2)2

32π2
.

Higher-point extremal correlators are given explicitly by the remarkably simple formula
(17). When r ≥ 3, the exponents in the formula (17) can no longer be expressed purely in
terms of the dimensions {∆i, ∆̄} as in the three-point function (18).

Summarizing, we found the exact “extremal” correlators in the double-scaling limit
where all charges go to infinity scaling in the same way. The result represents the resum-
mation of the infinite number of L-loop Feynman diagrams that survive the limit. These
are shown in figure 1 and generalize the “Kermit the frog” diagrams described in detail
in [4]. The existence of the limit can be understood from the saddle-point analysis, which
led to finite expressions that become exact at n = ∞. For large, but finite, charges, the
double-scaling limit can be viewed as the leading result in a 1/n expansion. The next
O(1/n) terms in the expansion may be systematically derived from corrections to the sad-
dle point approximations, obtained from the Taylor expansion of the action around the
saddle-point.
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∫

d4xG(x, x1)G(x, x2)G(x, x3)G(x, x4) =
H

28π6 r213 r
2
24

, (26)

where

H =
1

1− x− y

(

log x(1− y) log
y

1− x
− 2 Li2(x) + 2 Li2(1− y)

)

, (27)

with

x =
ρ u2

1 + ρ u2
, y =

ρv2

1 + ρ v2
, ρ =

2

1− u2 − v2 − λ
, λ =

√

(1− u2 − v2)2 − 4 u2 v2 ,

being u, v the conformal ratios

u ≡ r12r34
r13r24

, v ≡ r14 r23
r13 r24

; (28)

one finds that

Sint =
λ

16π2
log

r13r24
r12r34

+
λ

16π2
log

r14r23
r12r34

+
λ

16π2
log(r12 r34) + S ′

int , (29)

where

S ′
int ≡

λ

16π2

1

(r14r23 + r13r24)2

(

H r214 r
2
23 − r213r

2
24 log

r13r24
r12r34

− r214r
2
23 log

r14r23
r12r34

)

. (30)

Thus, altogether, we obtain

⟨φ(x1)
n φ(x2)

n φ̄(x3)
n φ̄(x4)

n⟩ = (n!)2

(4π2)2n
(r14r23 + r13r24)2n (r12r34)

λ

16π2

(r14r23r13r24)
2∆ e−S′

int . (31)

The final expression (31) has the symmetries under the exchanges x1 ↔ x2 and x3 ↔ x4.
These symmetries are not manifest in the term with H , but they can be shown to hold
using standard properties of Li2(x) (see discussion in appendix C of [16]). The four-point
function (31) also has the expected singular behavior in the channels x1 = x3, x1 = x4,
x2 = x3, x2 = x4, with a power governed by the full scaling dimension ∆ of the operators,
including the anomalous dimension. Here we have used the property that S ′

int is regular
at any coinciding points, as can be shown using the above formula for H . While the free
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charge conservation, due to the interaction there is a behavior (r12r34)
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16π2 . This behavior
was already present in the extremal correlators. The terms with log r12 and log r34 in S ′
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exactly cancel out with similar terms originating from H in the limit where either r12 → 0
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H

28π6 r213 r
2
24

, (26)
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H =
1

1− x− y

(

log x(1− y) log
y

1− x
− 2 Li2(x) + 2 Li2(1− y)
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, (27)

with

x =
ρ u2

1 + ρ u2
, y =

ρv2

1 + ρ v2
, ρ =
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, λ =

√
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H r214 r
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23 − r213r

2
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r12r34

− r214r
2
23 log

r14r23
r12r34
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int . (31)
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2.2 Non-extremal correlators

Let us now discuss general (“non-extremal”) correlation functions. The general solution
to (10) is given by

σ(x) = λ
1

2

s
∑

j=1

bj
σ̄(yj)

G(x, yj) , σ̄(x) = λ
1

2

r
∑

i=1

ai
σ(xi)

G(x, xi) , (19)

One can check that these equations are consistent provided
∑r

i=1 ni =
∑s

j=1mj . General
correlation functions can be obtained by substituting (19) into the action (8), (9). In what
follows we shall focus on the four-point function.

2.2.1 Four-point non-extremal correlator

As an explicit example, let us consider the case r = s = 2, i.e. the four-point function

⟨φ(x1)
n1 φ(x2)

n2 φ̄(y1)
m1 φ̄(y2)

m2⟩ , n1 + n2 = m1 +m2 . (20)

In addition, in this subsection we shall consider the particular case

a1 = a2 = b1 = b2 = 1 , (21)

so that ni = mi = n. Then

σ(x) = σ0(x2)

√

G(x1, y2)
G(x2, y1)

G(x, y1) +
√

G(x1, y1)
G(x2, y2)

G(x, y2)
√

G(x1, y2)G(x2, y1) +
√

G(x1, y1)G(x2, y2)
, (22)

and

σ̄(x) =
λ

1

2

σ0(x2)

(

G(x, x2) +

√

G(x2, y1)G(x2, y2)

G(x1, y1)G(x1, y2)
G(x, x1)

)

. (23)

The factor σ0(x2) = σ(x2) cancels out when computing the action. Substituting the solu-
tion into the free part of the action, given in (8), we obtain

Sfree = 2n− n log λ
(

√

G(x1, y2)G(x2, y1) +
√

G(x1, y1)G(x2, y2)
)2

. (24)

It is convenient to rename (y1, y2) → (x3, x4) and define rij ≡ |xi − xj |. Thus we obtain

⟨φ(x1)
n φ(x2)

n φ̄(x3)
n φ̄(x4)

n⟩free =
n2ne−2n

(4π2)2n

(

1

r14r23
+

1

r13r24

)2n

. (25)

Let us now compute the interaction term. Substituting the solutions (22), (23) for σ
and σ̄ into (9), we get an expression with nine integrals. Using the formulas (15), (16) and
the integral computed in [16] (see also [17, 18, 19])
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• Recovers the extremal case in the suitable coincidence limit


• The free part can be cross-checked against “conformal block computations” in Dolan-Osborn 



• So far we have been interested on the weak “’t Hooft” coupling limit. In 
fact we have concentrated on the leading correction (leading 1/n: resums 
infinitely many loops in the standard expansion!). 


• To go beyond there, just solve in perturbation theory the saddle point 
equations…unfortunately this is very hard!


• We can exploit the conformal invariance and map the “partition function” 
to the energy on the cylinder (at fixed charge!)


• Since we want spatially homogeneous configurations 
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1 Generalities

Consider the correlator of an operator O of dimension � in a CFT in d (euclidean) dimen-
sions. We can write it as

hO(x)O(0)i =
C

|x|2�
. (1)

On the other hand, by a conformal transformation, we can map Rd into R⇥ S
d�1 as

ds
2 = d~x

2 = dr
2 + r

2
d⌦2 = e

2 ⌧ (d⌧ 2 + d⌦2) , r = e
⌧
. (2)

Since the operator O has conformal dimension �, the correlator becomes

lim
⌧i!1

e
�� ⌧

e
�� ⌧i hOcyl(�1)Ocyl(⌧)i = C e

�2� ⌧  hOc(�1)Oc(⌧)i = lim
⌧i!1

C e
�� (⌧�⌧i) ;

(3)
where we denote the operators in the cylinder by a cyl subscript. We can finally re-pack
the result as

hOc(�1)Oc(⌧)i = lim
⌧i!1

C e
��

R ⌧
⌧i

d⌧ ; (4)

Thus we see that the correlation function in the cylinder captures directly the dimension
of the operator. Moreover, we can now invoke the operator-state correspondence: the
operator insertion in the far past can be regarded as CFT in a given state in the far past.
Then, the dimension of the operator is simply captured by the evolution operator (energy,
from the cylinder point of view). Since we will be interested on correlators of operators
charged under a given global symmetry, such state is a fixed charge state.

To further progress, let us assume a CFT with action (in Rd)

S =

Z X

i

@�i@�̄i � V . (5)
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Then, the dimension of the operator is simply captured by the evolution operator (energy,
from the cylinder point of view). Since we will be interested on correlators of operators
charged under a given global symmetry, such state is a fixed charge state.

To further progress, let us assume a CFT with action (in Rd)

S =

Z X
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Suppose that the system has a symmetry �i ! e
i qi �i. The corresponding conserved
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jµ = i

X

i

qi (�i @µ�i � h.c) . (6)

In the following, we will be interested on correlators of operators charged under this sym-
metry. Using the logic above, when mapped to the cylinder, the state of interest is a
state with fixed charge Q =
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x j0. Moreover, since such state should be rotationally
invariant, we can drop the angular dependence and consider
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The crucial observation is that if we write �i = 1p
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i✓i , the charge, when mapped to

the cylinder, becomes Q = ⌦
P

i qi ⇢
2
i e

i✓i . Hence, if we consider operators (states) with
large charge, ⇢i is forced to be large, thus allowing an expansion in inverse powers of the
charge. Hence, all in all, the problem is reduced to the classical mechanics of the system
with lagrangian (7) at fixed (and large) charge.

1.1 Classical mechanics at fixed charge

Let us consider a system with lagrangian (7). Recall that it is invariant under the symmetry
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The equations of motion for ✓i are
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Multiplying each equation by qi and summing all of them, we see that the fixed charge
condition Q = Q̄ is automatically satisfied. Hence, L0 automatically enforces the fixed
charge condition. The solution to the equations is

⇢
2
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Plugging this into the lagrangian we have
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In the following we will be mostly interested on static configurations, for which ⇢̇i = 0.
Moreover, let us suppose that V is of the form

V =
1

2
m

2
~⇢
2 + U , (13)

Then, the equations of motion are simply

m
2
⇢i +

@U

@⇢i
=

⇣
Q̄

~q 2

⌘2 q
2
i

⌦2 ⇢3i

. (14)

Let us consider the free case U = 0. The solution is

⇢i =
⇣
Q̄

~q 2

⌘ 1
2
⇣

q
2
i

⌦2 m2

⌘ 1
4
. (15)

The on-shell e↵ective potential is

Ve↵

���
on�shell

=
p

m2
Q̄

~q 2

X

i

|qi| . (16)

Since qi = ±1,
P

|qi| = ~q
2, and so

⌦Ve↵

���
on�shell

=
p

m2 Q̄ . (17)

In the cases of interest for us, m2 =
�
d�2
2

�2
. Moreover, ⌦Ve↵

���
on�shell

will have the interpre-

tation of a scaling dimension, so finally
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d� 2
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Q̄ , (18)

which is the correct scaling dimension for an operator of charge Q̄ composed of Q̄ scalar
fields in d dimensions.
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Badel, Cuomo, Monin & Rattazzi, 1909.01269
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• For strong “’t Hooft coupling” we can write


• We can recognize here              (computing quantum corrections indeed 
completes the expansion)


• This makes contact with the (very generic=powerful!) expected large 
charge behavior

� � n
4
3

� � n
d

d�1

Great body of work building up on this, starting with Alvarez-Gaume, Loukas,
Orlando & Re�ert; Hellerman, Kobayashi, Maeda & Watanabe and many others
(apologies!)

• Mapping to the cylinder, the large charge sector appears as a SSB ground state


• The radius of the sphere and the charge provide two well-separated scales: regardless 
on the coupling one can write an EFT (strongly constrained by conformal invariance)


• The scaling of the dimensions immediately follows, along with other universal properties


• The extra twist: really it is an expansion in       . Depending on the n-scaling of g one 
can have different regimes.

g#n

(In SQCD g is exactly marginal. In WF g is tied with d-4, so we 
interpolate across dimensions)



• WF in d=3 is very interesting…in particular the O(N) model bears a connetion to holography. 
One may wonder wether a similar story holds true for the O(N) model around d=5


• The critical dimension is 4: not obvious that the O(N) model is a CFT (UV: it is “flown from”). 
It was proposed that it has a UV completion in terms of a cubic theory with N+1 fields and 
O(N) symmetry. 


• Such UV completion has (PERTURBATIVE) IR fixed point. (Some) correlators, scaling 
dimensions etc. were shown to agree with the quartic model


• However there are instanton corrections which render scaling dimensions etc. imaginary: 
not really a CFT


•

Fei, Giombi & Klebanov, 1404.1094
Fei, Giombi, Klebanov & Tarnopolsky, 1411.1099

Aizenmann, 1981
Percacci & Vacca, 1405.6622
Eichhorn, Janssen & Scherer, 1604.03561
Kamikado& Kanazawa, 1604.04830
Giombi, Huang, Pufu & Tarnopolsky, 1910.02462

• De-stabilizing instantons are proportional to


• In the double-scaling limit these are supressed (just as in SYM)

e�Sinst � e� 1
coupling � e� n

�

Large charge sector: instability-free sector in a complex CFT!
Arias-Tamargo, R-G & Russo, 2003.13772



• Consider a O(2N) theory with bosonic fields in the vector representation. 
Generic operators made out of products of fields will be in the 


• O(2N) has a U(1)xSU(N) subgroup under which 


• Writting                   , the operator                 can only be an entry of                    . 
So computing their correlators we’ll capture the correlators of 


• The cubic theory (that with IR perturbative fixed point) is


• Just as before

model. We also discuss the absence of instanton contributions in the double scaling limit which thus
renders this sector stable. In section 3 we compute higher-point functions for the so-called extremal
case – a terminology borrowed from the supersymmetric case that alludes to correlators with exactly
one insertion of an antiholomorphic field. In section 4 we compute the scaling dimension of meson
operators. Some concluding remarks will be made in section 5, which includes a discussion of open
problems. Finally, in the appendices we collect some useful formulas as well as a standard derivation
of the relevant correlation functions, including combinatorial factors, for the cubic interaction.

2 Large charge operators in the cubic O(2N) theory in d =

6− ϵ dimensions

Our starting point is the d = 6− ϵ dimensional theory investigated in [30, 13]. It is defined by the
action

S =

∫

ddx

(

1

2

(

∂ϕ⃗
)2

+
1

2

(

∂η
)2

+
g1
2
η
(

ϕ⃗
)2

+
g2
6
η3
)

. (2.1)

Here ϕ⃗ is a vector of O(2N). As discussed in the Introduction, this theory has an IR stable fixed
point for N > Ncr. The critical Ncr was estimated in [22, 13] to be 2Ncr ∼ 1038 using the one-loop
β functions. However, further analysis [23, 24] suggests that higher loop corrections may, at ϵ = 1,
dramatically reduce this value. From the one-loop β functions, one finds that the theory (2.1) has
an IR stable fixed point which at large N sits at [13]

g∗1 =

√

6 (4π)3 ϵ

2N

(

1 +O
( 1

N

)

)

, g∗2 = 6

√

6 (4π)3 ϵ

2N

(

1 +O
( 1

N

)

)

. (2.2)

For N < Ncr, the critical couplings move to the complex plane and the fixed point cannot describe
a unitary theory.

2.1 Correlation functions for a class of large charge operators

In the theory (2.1), the elementary fields ϕi fill a vector representation of O(2N), whose Dynkin
labels are [1, 0, · · · , 0]DN

. Composite operators are then formed from their products and derivatives.
Let us consider the class of operators formed solely by symmetrized (as we are dealing with bosons)
powers of the ϕi. One can check that

Symn
(

[1, 0, · · · , 0]DN

)

=

⌊n
2 ⌋
∑

i=0

[n− 2i, 0, · · · , 0]DN
. (2.3)

It is clear that all but the i = 0 term in the sum in (2.3) will contain powers of ϕ⃗ 2 when constructed
in terms of fields. As an illustrative example, one may consider the case of even n, when the last
term in the sum in (2.3) is [0, 0, · · · , 0]DN

; corresponding to (ϕ⃗ 2)
n
2 . For reasons which will become

clear momentarily, let us consider precisely the i = 0 term in the sum in (2.3), i.e. the [n, 0 · · · 0]DN

5

representation of O(2N).5 Now, O(2N) has a SU(N) × U(1) subalgebra. When branched in
SU(N)× U(1), the [n, 0 · · · 0]DN

gives

[n, 0, · · · , 0]DN
→

n
∑

k=0

[n− k, 0 · · ·0, k](n−2k) , (2.4)

where the RHS is meant to refer to AN−1 Dynkin labels and the subscript is the U(1) charge.
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• Now we find


• In turn, the cuartic theory, upon introducing a HS field and looking to the IR fixed 
point, becomes


• Computing the same correlator amounts to evaluating


• …which recovers the same result as in the cubic theory!


• One can generalize the result: consider “meson” operators                 in the                     
These can be embedded into a gauge theory with an IR fixed point

− Sint =
nh2

1

G(x1 − x2)2

∫

d6x

∫

d6y G(x− x1)G(x− x2)G(x− y)G(y − x1)G(y − x2) . (2.28)

Upon shifting x → −x+ x1 and y → −y + x1, this becomes (z = x1 − x2)

− Sint =
nh2

1

G(z)2

∫

d6x

∫

d6y G(x)G(x− z)G(x− y)G(y)G(y − z) . (2.29)

Sint involves the integral I =
∫

d6x
∫

d6y G(x)G(x−z)G(x−y)G(y)G(y−z), which can be written
as

I =

∫

d6P

(2π)6
e−i P z Ĩ , Ĩ =

2
∏

i=1

∫

d6pi
(2π)6

G̃(p1) G̃(p2) G̃(p1 − p2) G̃(p1 + P ) G̃(p2 + P ) . (2.30)

where G̃(p) = 1/p2. Two-loop integrals of this form have been computed in [54]. In d = 6 − ϵ
dimensions one finds

Ĩ =
π6−ϵ

(2π)12
(P 2)1−ϵ

[

− 1

3 ϵ2
− 3− γE

3 ϵ
+ finite

]

. (2.31)

Fourier-transforming and using the explicit expression for the Green’s function (see appendix A),
we finally find

I =
1

64 π3
G2(z) log |z|2 . (2.32)

Thus

− Sint =
1

64 π3
nh2

1 log |x1 − x2|2 . (2.33)

Using this result and the value of h1 at the fixed point coming from (2.2), (2.8), to leading order in
1
N

we find

− Sint =
3 ϵn2

N
log |x1 − x2|2 . (2.34)

Then (2.27) becomes

⟨On(x1)On(x2)⟩ ∼
1

|x1 − x2|
2 (∆cl+γ[n, 0,··· , 0]DN

)
, (2.35)

where the anomalous dimension is given by

γ[n,0,··· , 0]DN
= −3 ϵn2

N
. (2.36)

It is important to stress that, even though this result is to first order in perturbation theory at
weak coupling in the hi and in the “classical limit” defined by the large n limit, it resums an infinite
series of Feynman diagrams in the usual perturbative expansion. To see this, note that expanding
e−Sint = 1− Sint + · · · , we have
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− Sint =
nh2

1

G(x1 − x2)2

∫

d6x

∫

d6y G(x− x1)G(x− x2)G(x− y)G(y − x1)G(y − x2) . (2.28)

Upon shifting x → −x+ x1 and y → −y + x1, this becomes (z = x1 − x2)

− Sint =
nh2

1

G(z)2

∫

d6x

∫

d6y G(x)G(x− z)G(x− y)G(y)G(y − z) . (2.29)

Sint involves the integral I =
∫

d6x
∫

d6y G(x)G(x−z)G(x−y)G(y)G(y−z), which can be written
as

I =

∫

d6P

(2π)6
e−i P z Ĩ , Ĩ =

2
∏

i=1

∫

d6pi
(2π)6

G̃(p1) G̃(p2) G̃(p1 − p2) G̃(p1 + P ) G̃(p2 + P ) . (2.30)

where G̃(p) = 1/p2. Two-loop integrals of this form have been computed in [54]. In d = 6 − ϵ
dimensions one finds

Ĩ =
π6−ϵ

(2π)12
(P 2)1−ϵ

[

− 1

3 ϵ2
− 3− γE

3 ϵ
+ finite

]

. (2.31)

Fourier-transforming and using the explicit expression for the Green’s function (see appendix A),
we finally find

I =
1

64 π3
G2(z) log |z|2 . (2.32)
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− Sint =
1

64 π3
nh2

1 log |x1 − x2|2 . (2.33)
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Since h1
h2

∼ O(h0
i ), the solution to these equations is of orderO(h0

i ), consistently with the assumption
for the instanton solution to (2.14).

Evaluating the action on the solution, one obtains the instanton action given by

Sinst ∼ −n
768 π3

5 h2
2

+O(h0
i ) . (2.49)

Thus, in the large n limit (and actually for any value of hi), the instanton action goes to −∞,
and hence the instanton contribution is exponentially suppressed. The absence of instanton con-
tributions in the large n, double scaling limit was first noticed in the supersymmetric context in
[47]. Thus we conclude that, in the sector of large charge operators, instantons are completely sup-
pressed even at finite N . This shows that large charge operators are free of instanton instabilities
and therefore represent a stable sector with real scaling dimensions.

2.4 The quartic theory avatar

Let us consider the quartic O(2N) theory with lagrangian

S =

∫

ddx

(

1

2

∣

∣∂ϕ⃗
∣

∣

2
+

g

4
(ϕ⃗2)2

)

. (2.50)

This theory has a UV fixed point at negative g in 4 < d < 6 dimensions. It has been conjectured in
[13] that the cubic theory (2.1) is a UV completion of this theory. Just as in the cubic theory, we
will introduce the suitable complex combinations of fields to make explicit a U(N) subgroup of the
full O(2N). The standard treatment [10, 58] that generates the 1/N expansion is by considering a
Hubbard-Stratonovich transformation, which leads to the action

S =

∫

ddx

(

|∂φ⃗|2 + σ|φ⃗|2 − 1

4 g
σ2

)

. (2.51)

The original theory is recovered upon integrating out σ. At the (now UV) fixed point the last term
can be dropped, and the dynamic is just described by the action

S =

∫

ddx
(

|∂φ⃗|2 + σ|φ⃗|2
)

. (2.52)

It is convenient to re-scale σ as in [13] so that the action becomes7

S =

∫

ddx

(

|∂φ⃗|2 + 1√
N

σ|φ⃗|2
)

. (2.53)

A 2-point function for σ is induced at one-loop [10]. In position space, it reads (see appendix (B),
which includes a discussion of some relevant factors; see also [13])

⟨σ(x) σ(0)⟩ = Cd

2 (x2)2
Cd =

22+d Γ(d−1
2 ) sin(π d

2 )

π
3
2 Γ(d2 − 2)

. (2.54)

Note that, if one substitutes d = 6− ϵ, one finds

7Recall that we are considering the O(2N) model. Yet, as φ is complex, in the one-loop contribution to the σ

propagator N φ’s are running.
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⟨σ(x) σ(0)⟩ = 1

2
C̃6G(x) ; (2.55)

where G(x) is the 6d (scalar) propagator, and

C̃6 = (2N) g∗1
2 , (2.56)

being g∗1 the value of g1 at the fixed point given by (2.2). Note that g∗1
2 ∼ ϵ. Thus, to leading order

in ϵ, G(x) in (2.55) is just the 6d propagator.
The quartic theory (2.50) exhibits the same SU(N) global symmetry as the cubic theory (2.5).

Thus, we can consider the same On = (φ1)n operator which, by the same arguments as above,
can only belong to the dimension ∆cl operator in the [n, 0 · · ·0]DN

representation of the original
O(2N). Thus, the correlator ⟨On(x1)On(x2)⟩ determines its anomalous dimension. Since the σ
propagator is itself induced at one-loop, in the present formulation we do not have an easy path
integral representation for the correlator. Yet, we can compute it directly in perturbation theory.
The leading correction to the free theory is given by the diagrams in Fig. 4.

...

...
...

Figure 4: Diagrams contributing to the ⟨On(x1)O(x2)⟩ correlator in the quartic theory to the

leading-non-trivial order. Solid lines correspond to φ fields, while dashed lines are σ fields.

Just as for the cubic theory, the diagram on the left panel is suppressed with respect to the
diagram on the right panel of Fig. 4 in the large n limit by a factor 1/n. Hence, we only need to
evaluate the diagram on the right. Moreover, the combinatorics of the diagram on the right panel
of Fig. 4 are just as in the cubic case and thus, at large n, the diagram comes multiplied by n2

2 ,
giving (we include the aforementioned factor of 2 which cancels the 1

2 in the σ propagator)

D =
n2

2

C̃6

N
G(x1 − x2)

n−2

∫

d6x

∫

d6y G(x− x1)G(x− x2)G(x− y)G(y − x1)G(y − x2) . (2.57)

Using the explicit value of C̃6 in (2.56), we find

D = n2 g∗1
2G(x1 − x2)

n−2

∫

d6x

∫

d6y G(x− x1)G(x− x2)G(x− y)G(y − x1)G(y − x2) . (2.58)

This precisely recovers the second line in (2.38) (evaluated at the fixed point), implying a striking
match with the anomalous dimension computed from the cubic theory.
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xi
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xi
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Figure 5: Types of diagrams that contribute to the extremal correlators in the cubic theory. These
coincide with the relevant diagrams in the quartic theory upon replacing the ρ propagators by σ
propagators.

3.2 The quartic theory

In order to compute extremal correlators in these theories, we proceed as in section 2.4 by applying
the saddle-point method. By expanding the interaction factor e−Sint in powers of Sint, one can check
that the diagrams contributing to the extremal correlators in the large n limit are those in figure 5.
Just as in the 2-point case, one can easily show that these are indeed the Feynman diagrams that
carry the highest power of n and are thus selected in our limit.

Just as for the 2-point functions, we can compute the relevant correlation function order by
order in perturbation theory. In the end, since the combinatorics is just the same as in the cubic
model, the relevant diagrams are formally identical. Thus, to check agreement of the two theories
it is sufficient to check the first order. The corresponding diagrams are identical to the diagrams
shown in figure 5, upon replacing the propagator lines of the elementary field ρ of the cubic model
by the induced propagator of the HS field σ (denoted by a dashed line). However, (2.55), (2.56)
show that, just as for the 2-point function, on the fixed point the diagrams with the exchanged
scalar being σ will be identical to the diagrams in the cubic theory with the exchanged scalar ρ,
thus ensuring the agreement of the two computations.

4 Correlation functions for meson operators

The branching of the [n, 0, · · · , 0]DN
of O(2N) into U(1)× SU(N) in (2.4) has an interesting par-

ticularity for even n. For [2n, 0, · · · , 0]DN
, the RHS of (2.4) contains, for k = n, the representation

[n, 0, · · · , 0, n]0 of U(1) × SU(N). For n = 1, from the point of view of the theory written as in
(2.5), such operator corresponds to a “meson” operator Mi

j = φ̄j φi in the adjoint of SU(N), which
is neutral under U(1). Then, higher n corresponds to symmetrized n-fold products of this meson
operator. In particular, it follows that correlators of the [2n, 0, · · · , 0]DN

can also be computed
through correlators of n-fold symmetrized powers of meson operators.8

Consider nowMn = (φ1 φ̄2)n = (φ1 (φ2)∗)n. This operator clearly belongs to Symn([1, 0 · · · 0, 0]⊗
[0, 0 · · · 0, 1]). Moreover, since that this operator does not contain any trace, it can only be an
element of the [n, 0 · · ·0, n] SU(N) representation. Thus, we may compute correlators of the
[n, 0 · · ·0, n] representation by means of the correlator ⟨Mn(x1)M

n
(x2)⟩. Once again, Mn can

8Anomalous dimensions for similar meson operators in the quartic O(N) model in 4− ϵ dimensions were recently
computed in [59].
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Conclusions
• Identifying new expansions allowing to explore other corners of QFT is very 

interesting


• The large charge sector is one such example: allows to prove QFT’s in new 
regimes


• Typically the relevant combination is “gn”: 


• Potential interesting implications for the physics of WF (including d=5?)

• SQCD theories: the dimensions are protected by SUSY (from the point of view of what we 
discussed: moduli space makes V=0). But the coefficient depends non-trivially in gn


• WF theories: interesting regimes arise as gn is varied. Since g=4-d, this interpolates in 
dimensions

• If g, n are independent, 1/n expansion (regardless on g: a window into strong coupling!)


• Interesting regimes arise if g scales with 1/n. Two examples are
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