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 QFT is hard. It simplifies when there is a small parameter on which one
can expand

The star example: the semiclassical limit

o Take
Z:/e_%, S:/d4x8gb2+)\¢4. (1)

e Do =\"2 ¢ to find
Z:/e_h_SA, S:/d4x8g02+g04. (2)

e For very small A\ the saddle point approximation becomes exact.

e Moreover, one can systematically compute the corrections: perturbation
theory.



* This allows to access a “corner” of QFT. There is however a huge wild to
explore. One way is to look for similar expansions on other parameters

Another star example: the large N limit

o Take

Z:/Dgge_s, S:/ddwﬁg? A($2)2. (1)

e Do a Hubbard-Stratanovich-like transformation

2

Z:/Da/Dqu—S, S:/d%@&%ﬁaq?—%. (2)

e This may be re-written as

2

Z:/DJ/ngG_NSl, S:/d%@gb%x/ﬁ\%& fN. (3)

e So in the limit NV — oo, A — 0, g = N A = fixed we have another
semiclassical limit, this time with N~! playing the role of A.



* Inspired by this, in search for semiclassical expansions to probe more
corners of QFT’s, one may considering “cooking parameters” in which to
expand

* Suppose a family of operators labelled by some integer

e Such integer provides a new scale”, and in many cases its large value limit provides

a new semiclassical” expansion _ _ _
Note that this may be a window into

strong coupling dynamics!
* There are greatly celebrated examples of this idea
 Regge theory
* large spin expansions in CFT’s

e pp-wave



A natural and very universal candidate for such integer iIs a conserved
charge

 Moreover, since fixed points play a pivotal role in QFT, we’ll concentrate

on CFT’s: consider a CFT with a conserved charge and study the large
charge sector of such theory

* Lots of recent progress along these lines i ri” Skttt
* bottom-up” effective field theory approach

* top-down” case studies

e applications to SUSY systems

 Jfoday we’ll discuss some particular cases: we’ll probe large charge
sectors of interesting CFT’s in a top-down” approach
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Correlation functions in N=2 and large charge

» N=2 theories are interesting playgrounds to tinker with QFT: they have
SUSY enough so as to constrain dynamics to accessible limits but not too

much so as to “trivialize”

A lot of activity in recent times on N=2 theories (and relatives in other
dimensions)

* |n particular, one can exploit SUSY to compute observables exactly

LOCALIZATION

This includes correlators, defect operators and even the partition function itself (meaningful for 4d N=2)



CPO correlators through localization

* The 4d superconformal algebra contains

—a —b

a Ry )
1Qar 951 = €ape b(A 2) + €M+ €457

* Hence an interesting shortening condition is

Ro . .
[Q@,O]:OWAO:7O,]L:S:O, (and jgr = 0)

 This (together with being annihilated by S’s) defines Chiral Primary
Operators (CPQO’s)

* |n lagrangian theories, CPO’s are composites of scalars in vector multiplets

For completeness: another natural shortening condition is

QL,0] = [Q,,0] =0

This corresponds to operators on the Higgs branch (hypermultiplets, in lagrangian theories)



CPO’s have a non-singular OPE (not to violate the BPS bound). As a
conseqguence, they form a ring: the chiral ring

Their correlation functions are

g (7_2- _z-) Endowes the Coulomb branch of a very
ay I ’ interesting geometry...but that’s another story.
<OI(O)OJ($)> - ‘m‘ZAI Ar, Ay See Papadodimas; Baggio, Niarchos &

Papadodimas

SUSY implies that

(O1(z1) -+ Op(20)O(00)) = lim (O1(z1) - -+ On(24)O(00)) =

XL~
Al A AN
CAlAch;AB e CA;,L_A%QA' Ay

n—1

We will be interested on 2-point functions of extremal correlators



The 2-point functions can be mapped to the sphere

CaB

(A@)B(O) = 1axy 08, = {(o?*4 A@)B(0)) = Casda,an

To extract C, we can take the large x limit

2\ A
lim |2224 A(z) = 424 lim (1 1 ) " A(x)

2\ 4
Since dsgs = (1 | £l ) dssa

...it follows that 424 (A(N)B(S))ss = Cap



It turns out that, due to the very special SUSY properties of CPQO’s, upon
deforming the theory by

1 4 4
Szﬂz/d a;/d 0E EI:T[O]

...the correlation functions are

1 - _
——0,,0-_ Z(S* — (A(N)B(S))sa
350 0O yary = ANIBS)):

There is one subtlety, though: due to the conformal anomaly there can be
mMixXing

To remove this mixing, one has to run a Gram-Schmidt orthogonalization
(to recover the delta in dimensions in the correlator!)

Gerchkovitz, Gomis, Ishtiaque, Komargodski & Pufu, 1602.05971



e For N=4 write the sphere operators as 0" = (Tr¢>)" ] (Tre")™ = ¢35 O™

no =0

* FiXing m, the correlators group into separate Toda chains
Gonis Gy
Go Gyl

* For N=2 (superconformal) SQCD these chains are not obviously
decoupled

16 9,0 log G™ = G

* Recall that the GS is needed because the sphere supplements a scale which allows mixings

e Using this, it is possible to come up with an ordering for the GS such that one finds families of decoupled Toda
chains

* This typically requires mixing coefficients proportional to positive powers of R: not clear what the flat space limit is

 For N=4 things arrange such that these terms are absent (and one recovers the decoupled Toda chains)

Bourget, R-G & Russo, 1810.00840



One can nevertheless simply compute the lowest correlators by brute force.

The simplest ones are 9. = (Tr¢")", They can be computed from derivates of Z
wrt. the coupling (because they correspond to “insertions of the action”!)

One finds

G’ _9n(N?+2n —1)¢(3)

GN=1 — B A7? (Im7)2 G,;\gzél,g _ n!22n o (lta) . 1

5n(2N? —1) (3N* + (15n — 3)N? + (20n? — 15n + 4)) ((5)
473 N (N? + 3) (Im7)3

_|_

The polynomial in n multiplying each order in the coupling Is just the
appropriate so as to define the double scaling limit (at FIXED N!)

n — 00, g— 0, A = ¢°n = fixed ,

(Gauge instantons truly supressed!) Bourget, R-G & Russo, 1803.00580



 Going beyond this tower by explicit computation is very hard. The next
simplest case is SU(3): there is only one more CPO. Explicitly computing the
correlators (heavy use of Toda chain!) shows that the limit continues to exist

Beccaria, 1809.06280
Beccaria, 1810.10483

e |t turns out that the existence of the |Iimit Is rooted In the structure of the
correlators: the GS can be recasted as a matrix model

* Very sketchy: for SU(2) there is only one CPO, whose sphere correlators are derivatives of Z
wrt. the coupling. The flat space correlators are rations of subdeterminants of the matrix of
derivatives

e |t turns out that each such subdeterminant can be written as a matrix integral: convert the
computation of correlators into a matrix model!

n—1
1 > —A4rImTx; L
det M,y = E/O H dx;e 4 723 Z1 Loop (w/a:j) H(ZC] — )% .
J=0

 The 't Hooft limit of this matrix model is well defined: it is our double scaling limit (strictly
speaking, the latter is the weak 't Hooft coupling regime)

Grassi, Komargodski & Tizziano, 1908.10306
Beccaria, Galvagno & Hasan, 2001.06645

\4

(note that in any case, gauge instantons are safely supressed in this regime)



Large charge in WF

 The mere existence of the previous limit is somewhat surprising. One can
wonder wether a toy model version exists. The natural candidate is

_ 2, Y9, .4
s [ 1o + 41
* This theory has a U(1) symmetry ¢ — ¢« ¢
 Below 4d it has an IR fixed point

1677
d=4—¢ 2 qwrp — i €




In d=4 the theory is free. The natural (charged) operators are 0, = ¢"

Let’s compute their 2-point functions in (standard) perturbation theory. To
leading order

To second order

As n grows, there are many more “kermit diagrams”



Counting only these, one finds

= - 1 n! 1
Onl) Eul) = mzzo(—zg) Hm 4m (n —2m)! m!
n! 2m 2
In large n i =\, SO
(On(x) 0,(0)) =n! Y Ky, (_T)m % (On(2) O, (0)) = (O, () On(0))g e T

...S0 the result of the 1-loop exponentiates! In the end, it boils down to computing

1 4 2 2
K:G(O, mE /d 2G(0, 2)° G(z, x)°.

Using real space renormalization, one finally finds

K=~ log(A%?). (0u(@) 0,(0)) = S

8T (47T2)n‘$‘2(n+32772) |

Freedman, Johnson & Latorre, 1992
Arias-Tamargo, R-G & Russo, 1908.11347



This can be understood from a (deeper) perspective

The 2-point functions we are interested on can be written through a path
Integral as

(Oula) O(a2)) = [ (1) dlan)" e
Raising the insertions to the exponent

<On($1)@($2)> — /e_seff , Seff = / \afb\Z + %\¢|4 —nd(x —x1) logp —nd(x — x2) logp

...but the field is a dummy integration variable (¢ = vnre)

— T
(Oula)Oa)) = [ Sup= [ 1067 + Flgl = (o — 21) logio — b — 2) log ¢

L emergence of the double-scaling limit n — o0, g — 0, gn = k = fixed

Arias-Tamargo & R-G, Russo, 1908.11347
Badel, Cuomo, Monin & Rattazzi, 1909.01269
Watanabe, 1909.01337



This suggests that the free energy” has a double expansion

log (O, (71)O0(x2)) = n Zn_k [k (%)
k=0 Badel, Cuomo, Monin & Rattazi, 1909.01337

1/n plays the role of Planck’s constant. The leading term in the sum is the
classical trajectory

However, in terms of “the true Planck constant” this classical approximation
s fully guantum (resums an infinite number of corrections)

Note that the field gets a VEV of order v»

|t is natural to guess that something similar happens in SQCD.

e But there such VEV puts is in the Coulomb branch. The masses are

¢ _Vn _m

TMmonopole ™~ —— ~ ——— ~ —= m er 7~ YMN\/H YMN\/X
pol 9y M Py \/X W /hyp ¢g g

e So in the gauge theory we expect W/hypers to dominate the limit (specially at weak 't Hooft coupling)



 Large n defines a new “semiclassical expansion” (for a sector of the theory).
The saddle point equations are

K B K
0%p + o o|? = —6(z — x2) 0°p + P o|? = —6(z — x1)

6=

1
P

e At weak 't Hooft coupling” we can solve these perturbatively

8290 _ _5(33 — 332) % 7= \/C;((a;l_—le)
0"¢p = —d(x — 1) é = \/C;}(fx;flxl)

Hellerman & Maeda, 1710.07336

* Plugging this back into the action we find

_ __ RN 1 dCB T—11 2 T—To 2
(O, ()0 (2)) = Gy — w9)" ¢~ T Tarmag? | 42 Gla=wn)? Gla—aa)



* In the exponent we recognize the 1-loop diagram which we had before

e The result iIs then

L9 IR TS R N 1 w By A
A =n- .Zczgn —n.327T2.anz)\ %n.327T2

The strict large n, extreme weak coupling limit selects the first
correction, which is what the diagramatic computation captures



 \We can also compute higher point functions of large charge operators, at
least perturbatively in the “’t Hooft coupling”. Consider

<¢($1)n1 S ¢(mfr)nr¢(yl)ml T ¢(ys)ms> ; Z ng; = Z my;

* The path integral representation is

(A(x)™ - D))" Pp(y1)™ - - dys) ™) = /e—nSeff

_ > K 4\ | - | _
Set = [ 109 + Il = 3 6(c — w1) logp = 3" 6 — ) log 7

* so0 the analogous double scaling limit exists

n; = a;n , m; = bn g—0, n—00, gn°=fixed,

Arias-Tamargo, R-G & Russo, 1912.01623



e For “extremal correlators”

X €T;
n Ny L m m'
(B gl B = S | y : y
(47T2)m Hz:l "CEZ o y‘ " 32n? HZ<] ‘ZCZ — 'I.] 16 72 . .

 For more general correlators things are more complicated. Concentrate on 4-
point function (only extremal and one non-extremal)

1

Yy . )
H = (1og (1 —y) log — 2 Lig(x) + 2 Lig(1 — y))
l—x—y 1—
A 1 13724 14723
) ) L Si/nt = 1672 (r1aT2s + T13792)? (H 7”%4 7”%3 - 7"%37%4 log SRV 7’%47"33 log o , ,
<§b<l’ ) qb(:c )n gg(x )n (5(33 >n> L (TL') (7“147“23 —|—T137”24) " (7“127‘34) 1677 e—S{nt 14723 13724 12734 12734 o pPuU B P B 2 \ — \/ 1 5 g 1 5 5
1 i ’ ! (4m2)2n (7“147“237"137“24)2A x_1+pu2’ y_1+pv2’ p_l—uz—zﬂ—)\’ = v —u? =) —duty
rij = |z — ]
:7”127’34 v:7“14"“23
713724 7 13724

e Recovers the extremal case in the suitable coincidence limit

* The free part can be cross-checked against “conformal block computations” in Dolan-Osborn



So far we have been interested on the weak “’t Hooft” coupling limit. In
fact we have concentrated on the leading correction (leading 1/n: resums
infinitely many loops in the standard expansion!).

To go beyond there, just solve In perturbation theory the saddle point
equations...unfortunately this is very hard!

We can exploit the conformal invariance and map the “partition function”
to the energy on the cylinder (at fixed charge!)

C

— 7|22

(O(z) 0(0)) A (1 ~A [T d
v {O(=00) Ouf7)) = lim Ce®0 (Oc(~00) Oc(7)) = lim C'e® I

TQ/%OO

ds* = d7* = dr* +r* dQ)? = &*7 (dr* + dQ?) , r=e"

Since we want spatially homogeneous configurations

SZ/Z@qsiaq%—v L:Z(%Q/b%%ﬂpféf)—ﬂw Q=9 anib



Since we want the charge to be fixed, we may consider instead

V==Y abh=30 (300 50000 - V-2 S 2a) =0
Solving that eq. and plugging this back we find

. ) 1
2 Q L .2

07 m* 5+ U

1
2
Extracting an overall factor of the charge, we can establish the double scaling
expansion

Since we also want time-independent configurations, we just have to
minimize the effective potential. These are algebraic equations!

. K K,2

kK<<1l: n (1 3o — g3 - O(k )

1 2
k>>1: n(:’ié | W; | _1))

N\ =

Badel, Cuomo, Monin & Rattazzi, 1909.01269
Watanabe, 1909.01337



* For strong “’t Hooft coupling” we can write A ~n3

 \We can recognize here A ~nzt (computing quantum corrections indeed
completes the expansion)

 This makes contact with the (very generic=powerful!) expected large
charge behavior

 Mapping to the cylinder, the large charge sector appears as a SSB ground state

* The radius of the sphere and the charge provide two well-separated scales: regardless
on the coupling one can write an EFT (strongly constrained by conformal invariance)

* The scaling of the dimensions immediately follows, along with other universal properties

* The extra twist: really it iIs an expansion in g#n . Depending on the n-scaling of g one

can have different regimes.
: : L. : Great body of work building up on this, starting with Alvarez-Gaume, Loukas,
(In SQCD g is exactly marginal. In WF g is tied with d-4, so we Orlando & Reffert; Hellerman, Kobayashi, Maeda & Watanabe and many others

interpolate across dimensions) (apologies!)



WEF in d=3 is very interesting...in particular the O(N) model bears a connetion to holography.
One may wonder wether a similar story holds true for the O(N) model around d=5

The critical dimension is 4: not obvious that the O(N) model is a CFT (UV: it is “flown from?).
It was proposed that it has a UV completion in terms of a cubic theory with N+1 fields and
O(N) symmetry.

Such UV completion has (PERTURBATIVE) IR fixed point. (Some) correlators, scaling
dimensions etc. were shown to agree with the quartic model

Fei, Giombi & Klebanov, 1404.1094
Fei, Giombi, Klebanov & Tarnopolsky, 1411.1099

However there are instanton corrections which render scaling dimensions etc. imaginary:
not really a CFT

Aizenmann, 1981

Percacci & Vacca, 1405.6622

Eichhorn, Janssen & Scherer, 1604.03561

Kamikado& Kanazawa, 1604.04830

Giombi, Huang, Pufu & Tarnopolsky, 1910.02462
S - —

inst ~, @ coupling ~u @

* De-stabilizing instantons are proportional to e~ X
* |n the double-scaling limit these are supressed (just as in SYM)

Large charge sector: instability-free sector in a complex CFT!

Arias-Tamargo, R-G & Russo, 2003.13772



Consider a O(2N) theory with bosonic fields in the vector representation.
Generic operators made out of products of fields will be in the

See also Antipin, Bersini, Sannino, Wang & Zhang; 2003.13121, 2006.10078

Sym"([l, 0, -, O]DN) — N[ —2,0,---, 0],

n

O(2N) has a U(1)xSU(N) subgroup under which [n. 0. 0o, = > [n =k 0---0, Fn-2xy

k=0

Writting ¢ = €+¢"* | the operator O.=(¢)" can only be an entry of(, 0, Ol .

So computing their correlators we’ll capture the correlators of [n, 0,-- -, 0],

The cubic theory (that with IR perturbative fixed point) is

L1 .
S = /dda’: (\%\2 + 5(377)2 + g1 0" + % 773>

Just as before

h
ol =vnd', n=\vnp G=-—, Ggo=—
NG

S
3 -



Now we find

1 3 en?
YA EETR—— Vi, 0, ,0py =

(On(z1) 6%(5’32» ~

In turn, the cuartic theory, upon introducing a HS field and looking to the IR fixed
point, becomes

. ; C Q2+ (=LY gip(zd
s— [t (106 + — oldl) _ G, PR s

Computing the same correlator amounts to evaluating &~} & —

...which recovers the same result as in the cubic theory!

One can generalize the result: consider “meson” operators M = (¢' )" In the 2n,0,---, 0],
These can be embedded into a gauge theory with an IR fixed point



Conclusions

ldentifying new expansions allowing to explore other corners of QFT is very
Interesting

The large charge sector is one such example: allows to prove QFT’s in new
regimes

Typically the relevant combination is “gn”:

* |f g, n are independent, 1/n expansion (regardless on g: a window into strong coupling!)

* |nteresting regimes arise if g scales with 1/n. Two examples are

 SQCD theories: the dimensions are protected by SUSY (from the point of view of what we
discussed: moduli space makes V=0). But the coefficient depends non-trivially in gn

* WF theories: interesting regimes arise as gn is varied. Since g=4-d, this interpolates in

dimensions
Sharon & Watanabe, 2008.01106

Potential interesting implications for the physics of WF (including d=57)



Many thanks!!!



