

INFN per PIP-II – Proton Improvement Plan II

Rocco Paparella per il team SRF LASA Consiglio di Sezione INFN 29.6.2020 A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

- Build a world-class neutrino program
 - definitive measurements of neutrino oscillations, search for proton decay and neutrinos from supernova bursts
- Host it as a global project
- Upgrade Fermilab accelerator complex to provide >1 MW proton beam

Recommendation 13: Form a new international collaboration to design and execute a highly capable Long-Baseline Neutrino Facility (LBNF) hosted by the U.S. To proceed, a project plan and identified resources must exist to meet the minimum requirements in the text. LBNF is the highest priority large project in its timeframe.

Recommendation 14: Upgrade the Fermilab proton accelerator complex to produce higher intensity beams. R&D for the Proton Improvement Plan II (PIP-II) should proceed immediately, followed by construction, to provide proton beams of >1 MW by the time of first operation of the new long-baseline neutrino facility.

PIP-II / LBNF / DUNE

Powerful proton beams (PIP-II)

- 1.2 MW upgradable to multi-MW to enable world's most intense neutrino beam
- Dual-site detector facilities (LBNF)
 - Deep underground cavern (1.5 km) of 70kt liquid argon fiducial volume
 - A long baseline (1300 km)
- Deep Underground Neutrino Experiment (DUNE)
 - Liquid Argon the next-generation neutrino detector

PIP-II Scope

800 MeV H- linac

- Warm Front End
- SRF section

Linac-to-Booster transfer line

• 3-way beam split

Upgraded Booster

- 20 Hz, 800 MeV injection
- New injection area

Upgraded Recycler & Main Injector

• RF in both rings

Conventional facilities

- Site preparation
- Cryoplant Building
- Linac Complex
- Booster Connection

New scope was recently included under direction of the DOE, enabling the complex to reach 1.2 MW proton beam on LBNF target.

Fermi National Accelerator Laboratory

The PIP-II project will supply powerful neutrino beams for the LBNF/DUNE experiment.

PIP-II International Partners, Expertise and Capabilities

India, Department of Atomic Energy (DAE) (started 2009) BARC, RRCAT, VECC; also IUAC

Substantial engineering/manufacturing experience Superconducting magnets for LHC; 2 GeV synch light source

Italy, INFN (started 2016)

Internationally recognized leader in superconducting RF technologies SRF cavity and cryomodule fabrication for XFEL; SRF cavities for ESS

UK, UKRI (started 2017)

Substantial engineering and manufacturing experience Construction, operation of synch light & neutron sources SRF cavity processing and testing for ESS

France, CEA, CNRS/IN2P3 (started 2017)

Internationally recognized leader in large-scale CM assembly CM assembly for European XFEL and ESS SSR2 cavities and couplers for ESS

Poland, WUST (started 2018)

Substantial engineering and manufacturing experience CDS, LLRF, QC for XFEL and ESS

Status of PIP-II International Agreements

INFN & PIP-II

A long-term fruitful Collaboration exists between Fermilab and INFN.

- A first agreement between DoE and Italian Ministry of Education, University and Research (MIUR) in July 2017 quote high power proton accelerators.
- Green light in 2018 from MIUR for an Italian participation to the realization of PIP-II through an in-kind contribution mediated by INFN LASA.
- INFN-LASA is today expected to build the 650 MHz cavities required by the low-beta section of the front-end linac, as signed by US Department of Energy and Italian MIUR on December 4th 2018.

The PIP-II linac

- 800 MeV, 2 mA H- beam.
- Final energy up to 120 GeV using Booster and Main Injector.
- Modern superconducting linac of CW-capable components, initially operated in pulsed mode.
 11 MeV 177 MeV 800 MeV Beam dump and future extensions
- 23 CMs, 119 cavities of 5 types SSR2 HB650 HWR SSR1 LB650 β=0.47 β=0.11 B=0.22 β=0.61 β=0.92 480 MeV 2.1 MeV 38 MeV To Booster **ΜΕΒΤ** β=0.11 β**=0.22** β=**0.47** RFO β**=0.92** LEBT β**=0.61** SC Room Superconducting HB650 Temperature Radio Frequency 4 CM Technology Technology 4 Cav LB650 50 MHz SSR2 9 CM PIP-II LB650 SSR1 7 CM 36 Cav 2 CM 35 Cav 650 MH; **Project Specifications** HWR 16 Cav 325 MHz 1 CM Acc. Gradient 16.9 MV/m 325 MHz 8 Cav 833 MeV 2.4 1010 Q_0 162.5 MHz 516 Me 20 Hz/0.55 ms to CW RF rep rate 177 Beta 0.61 32 Me 10 MeV 2.1 MeV Low-Beta (LB650, β =0.61) cryomodule

RFO

and cavity specifications

INFN-LASA contribution to PIP-II

- INFN-LASA contribution will cover the needs of LB650 section, and this includes:
 - 38 SC cavities required to equip 9 cryomodules with 2 spares, delivered as ready for string assembly.
 - Qualification via vertical cold-test provided by INFN through a qualified cold-testing infrastructure acting as a subcontractor
 - Compliance to the PIP-II System Engineering Plan.
- INFN LASA already achieved:
 - a novel RF and mechanical design for the LB650 cavities that then became the official cavity design. It's fully plug compatible with the Fermilab technical interfaces and meeting performance requirements.
 - Single-cell and multi-cell LB650 prototypes with the tooling and recipes required for inner surface treatments
 - Finalization of **Project Plan Document** describing INFN in-kind contribution
 - Engagement of mutual technical teams

INFN LB650 Cavity Design

Dipole HOM at 1678 MHz showing partial reflections in the FPC

INFN LB650 for PIP-II, c	old cavity				
B _{geometric}	0.61				
Frequency	650 MHz				
Number of cells	5				
Iris diameter	88 mm				
Cell-to-cell coupling, k _{cc}	0.95 %				
Frequency separation π -4 π /5	0.57 MHz				
Eq. diameter - IC	389.8 mm				
Eq. diameter - EC	392.1 mm				
Wall angle – Inner & End cells	2 °				
Effective length (10^*L_{hc})	704 mm				
Optimum beta β_{opt}	0.65				
$E_{\text{nort}}/E_{\text{acc}} \otimes \beta_{\text{ont}}$	2.40				
$B_{\text{nogle}}/E_{\text{nogle}} \otimes B_{\text{ont}}$	4.48 mT/(MV/m)				
$R/O \otimes B$	3/10 0				
	JHU 12				
$G \oslash \beta_{ont}$	193 Ω				
$G @ B_{ont}$ Inner cells stiffening radius	193 Ω				
G @ β _{opt} Inner cells stiffening radius	193 Ω 90 mm				
$G @ B_{ont}$ Inner cells stiffening radius External cells stiffening radius	90 mm				
$G @ \beta_{ont}$ Inner cells stiffening radius External cells stiffening radius Wall thickness	90 mm 90 mm 4.2 mm				
$G @ \beta_{ont}$ Inner cells stiffening radius External cells stiffening radius Wall thickness Longitudinal stiffness	90 mm 90 mm 4.2 mm 1.8 kN/mm				
G @ θ _{ont} Inner cells stiffening radius External cells stiffening radius Wall thickness Longitudinal stiffness	90 mm 4.2 mm 1.8 kN/mm				
G @ β_{ont} Inner cells stiffening radius External cells stiffening radius Wall thickness Longitudinal stiffness Longitudinal frequency sensitivity	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm				
G @ B _{ont} Inner cells stiffening radius External cells stiffening radius Wall thickness Longitudinal stiffness Longitudinal frequency sensitivity LED coefficient	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm				
G @ B _{ont} Inner cells stiffening radius External cells stiffening radius Wall thickness Longitudinal stiffness Longitudinal frequency sensitivity LFD coefficient k at 40 kN/mm	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm -1.4 Hz/(MV/m) ²				
$G @ \delta_{ont}$ Inner cells stiffening radiusExternal cells stiffening radiusWall thicknessLongitudinal stiffnessLongitudinalfrequency sensitivityLFD coefficient k_{ext} at 40 kN/mmPressure sensitivity	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm -1.4 Hz/(MV/m) ²				
G @ θ_{ont} Inner cells stiffening radiusExternal cells stiffening radiusWall thicknessLongitudinal stiffnessLongitudinalfrequency sensitivityLFD coefficient k_{ext} at 40 kN/mmPressure sensitivity k_{ext} at 40 kN/mm	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm -1.4 Hz/(MV/m) ² -11 Hz/mbar				
$G @ \delta_{ont}$ Inner cells stiffening radiusExternal cells stiffening radiusWall thicknessLongitudinal stiffnessLongitudinalfrequency sensitivityLFD coefficient k_{ext} at 40 kN/mmPressure sensitivity k_{ext} at 40 kN/mmMaximum Pressure	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm -1.4 Hz/(MV/m) ² -11 Hz/mbar				
$G @ \delta_{ont}$ Inner cells stiffening radiusExternal cells stiffening radiusWall thicknessLongitudinal stiffnessLongitudinalfrequency sensitivityLFD coefficient k_{ext} at 40 kN/mmPressure sensitivitykext at 40 kN/mmMaximum PressureVM stress at 50 MPa	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm -1.4 Hz/(MV/m) ² -11 Hz/mbar 2.9 bar				
G @ θ_{ont} Inner cells stiffening radiusExternal cells stiffening radiusWall thicknessLongitudinal stiffnessLongitudinalfrequency sensitivityLFD coefficient k_{ext} at 40 kN/mmPressure sensitivitykext at 40 kN/mmMaximum PressureVM stress at 50 MPaMaximum Displacement	193 Ω 90 mm 90 mm 4.2 mm 1.8 kN/mm 250 kHz/mm -1.4 Hz/(MV/m) ² -11 Hz/mbar 2.9 bar				

Electromagnetic Design

High-Order Modes risks have been assessed and neither instabilities (klystron-type or Beam-Breakup) nor additional cryogenic losses are posing critical issues.

Mechanical Design

The relatively small beam current of PIP-II results in an external Q of the cavity as high as 10⁷ that in turns implies a narrow bandwidth of the accelerating mode.

In order to have a stable beam acceleration, an extremely strict control of the Lorentz Force Detuning (LFD, or pulsed RF) and microphonic is required: the PIP-II operational scenario reveals to be an uncharted territory in terms of detuning control.

PIP-II ES&H at Fermilab

- Extensive finite element analysis of the cavity included simulations to evaluate the integrity of the cavity per the **Fermilab ES&H Manual** within *Mechanical, Cryogenic and Structural Safety* chapter.
- The simulations include several cases to ensure that the operating loads are below the maximum allowable limits:
 - protection against plastic collapse
 - local failure, buckling.
 - Ratcheting or fatigue failure

Successful Proto FDR at Fermilab on 7-8 Nov. 2019

From design to prototype

In order start validating cavity design, fabrication procedures and surface treatments, several **prototype cavities** already manufactured:

- 5 single-cell cavities, realized with terminal half cells
- **2 complete 5-cell cavities**, fully compliant to the current state of cavity interfaces as per Fermilab specifications.
 - Eddy Current scanning of Nb sheets done at DESY as for the ESS cavities.

LB650 cavities

INFN LB650 Prototypes

- 3 cavities at Fermilab
 - LB650 PIP2_L001 prototype, as welded
 - LB650 EZ_SCCFG005 single-cell test cavity, as welded
 - ESS-like prototype, 702.4 MHz, 6-cells, b=0.67 with LG niobium, ready for VT
 - samples from niobium sheets for material analyses

• 3 cavities at LASA

- LB650 PIP2_L002 prototype, already tuned for FF and frequency
- 3 LB650 single-cell test cavities, as welded (EZ_SCCFG004, EZ_SCCLG001 EZ_SCCLG002)
- 1 cavity at Zanon
 - EZ_SCCFG003 LB650 single-cell test cavity

INFN-LASA and Fermilab parallel agenda items

- Electro-Polishing RF surface treatment: specific tools are being developed and the process recipe is being optimized for the PIP-II geometry with steep cell walls.
 - The difference in size and shape requires a careful optimization of treatment parameters and electrode geometry with respect to 1.3 GHz tesla-shaped cavities
- Surface treat and qualify by means of vertical tests in both infrastructures the existing prototypes
- In-depth characterization of magnetic flux expulsion performances of the Niobium material of these prototypes at the VTS facility at FNAL.
- Jacketing and dressing of at least one multi-cell prototype to conclude this phase with an horizontal test with power coupler by mid 2021*.

* Effects of COVID-19 lockdowns still to be defined

Development of EP for PIP-II at INFN-LASA

The already existing EP plant at E. Zanon (used for XFEL and LCLS-II cavity production) is being optimized on the new cavity geometry and shape.

- Rotating frame properly adapted to host LB650 single cell cavities.
- Cathode shielded (50% of coverage) with a PTFE tape in correspondence of the beam tubes
- External water cooling spraying system is installed on the beam tubes
- Thermocouples and a US probe for **online thickness measurement** on cavity surface.
- An AI cylindrical enlargement has been procured to increase cathode surface and get 1:10 electrode-to-cavity surface ratio.
- Acid and water cooling improved for colder temperature (down to less than 10 °C for flash EP)

INFN LB650 – Bulk EP on single-cell

- Bulk EP done on LB650 FG001 single-cell at Zanon on refurbished EP plant (previously used for E-XFEL and LCLS-II)
 - Removal: 157 μ m avg. (target is 150 μ m)
 - Acid inlet temperature (at beginning of process): 15° C
 - Treatment divided in two steps over 2 days (6.5-6.6)
 - Calculated sensitivity: -1.48 kHz/μm
 - Calculated etching rate [avg.]: 0.14 μ m/min
 - Calculated iris/equator removal ratio: 1.7

INFN-LASA infrastructure upgrades

INFN cold test infrastructure at LASA is being upgraded.

- Cylindrical cryo-perm inner shield ordered in order to halve the currently measured 8 mG average remnant field in the cavity equator region.
 - Test installation successfully done at LASA, next heat-treatment
- Development of active and dynamic local magnetic field cancelling through combined use of Helmholtz's coils and flux-gate sensors
 - Setting almost zero residual magnetic field when SC transition occurs
- Boost in cryogenic plant performances:
 - Higher cryogenic power, up to 70 W at 32 mbar
 - Refilling at 2.0 K option ordered, to extend cavity testing time by means of counter-flow heat-exchanger followed by a Joule-Thomson expander.
 - Faster cool-down rate, now at about 1-1.5 K/min

PPD and planning for the series production

- **Project Planning Document (PPD) finalized**. It attests the compliance to the PIP-II Technical Review Plan, the procedure issued by Fermilab in order to meet PIP-II technical, schedule and budget commitments.
- For each In-Kind Contributor, PPD accounts for:
 - Scope of Work, high-level activities
 - Description of Deliverable Components and Documentations
 - Project Schedule and Key Milestones
 - Project Management and Control
 - Risk Management, Quality
 Assurance and Safety
 - Formal system acceptance
- Key Milestones agreed upon

LB51940

1851980

852020

Schedule as from PPD – pre COVID-19!

Realistic schedule developed within an early/late delivery scheme, with the latter already aligned with Fermilab expectations for CM schedule.

Final remarks

- The final impact of COVID-19 lockdowns will be addressed as soon as each every partner restarts
 - A coherent, realistic and integrated schedule has been created
 - The actual amount of shift in time still to be defined
- 2021 activities at INFN-LASA
 - Complete 2nd part of test program on LB650 single-cell
 - Preparation for VT with high-Q recipe, to be compared to reference E-XFEL recipe results (2020)
 - Cold-test at LASA
 - Complete qualification of LB650 prototype #2
 - Preparation for VT with high-Q recipe
 - Cold test at LASA
 - Follow-up at Fermilab with the LB650 horizontal test
 - Start of series production CFTs (Nb and cavities)

Final remarks

- LASA cryogenic infrastructure is going to be central
 - Delivering all qualification VTs during prototyping phase alongside to a state-of-the-art facility at Fermilab's VTS
 - Backing-up the external qualified VT infrastructure (DESY) for critical cavities requiring special diagnostics or test features:
 - X-ray spectroscopy, cryo X ray detection
 - Quench second sound detection and analysis
 - Fast thermometry
 - Lower temperature, down to 1.5 K
 - And others under development

Final remarks

- Besides few technical challenges unique to this project, the overall envelope of INFN-LASA contribution to PIP-II is comparable to the contribution to ESS project:
 - PIP-II can benefit substantially from the know-how and the competencies earned by INFN-LASA team during the E-XFEL and ESS projects in terms of design, production, quality control, document and data management.
 - The team working at INFN-LASA for the ESS shall be the reference for PIP-II
 INFN-LASA SRF Team

	US-DOE	INFN-MIUR
Principal Coordinator	J Siegrist	MIUR reference
Laboratory Director	N Lockyer	A Zoccoli
Technical Coordinator	L Merminga	C Pagani
Sub-Project Managers/Coordinators	S Chandrasekaran	R Paparella

Chart for DOE as in PPD

2020

- 1 Associato Senior
- 1 DR (pensione 1 luglio)
- 1 Ricercatore TI
- 3 Tecnologi Tl
- 1 Tecnologo TD
- 3 AR Tecnologi
- •—2 CTER TI (1 pensione 1 settembre)
- 1 CTER TD (rinunciato 30 aprile)
- Servizi LASA

2021

- 1 Associato Senior
- 1 Ricercatore TI
- 3 Tecnologi TI
- 1 Tecnologo TD (TI quando stabilizzato)
- 3 AR Tecnologi
- 1 CTER TI
- 1 CTER TD (elettrotecnico)?
- 2 CTER TD (meccanici/progettisti)?
- Servizi LASA

Extra slides

26 29.6.2020 R. Paparella I INFN per PIP-II

INFN PIP-II Cavity Design

INFN LB650 RF Design rationales:

- Cell coupling k_{cc} optimized assuming TESLA-type cavity as a reference, of the quantity N²/(βk_{cc}), where N is number of cells, β relative velocity. It models field-flatness sensitivity to cell frequency errors.
- End Cell frequency tuning achieved by **increasing the diameter of the whole terminal cell** thus preserving its round shape and symmetry.
- Maximize G factor while preserving sidewall angle at 2° avoiding potentially negative value during the cavity field flatness tuning stage.
- Achieve a large frequency separation between π and 4/5 π modes.

Parameters	INFN	FNAL_upd	Jlab	VECC	SNS
βgeo	0.61	0.61	0.61	0.61	0.61
frequency (MHz)	650	650	650	650	805
number of cells	5	5	5	5	6
Iris diameter (mm)	88	83	100	96	86
cell-to-cell coupling (%)	0.95%(≯ +23%)	0.75	1.4	1.24	1.53
Equator diameter (mm)	389.84	389.9	380.4	394.8	327.5
Equator ratio R=B/A	1	1.07	0.89	1.07	1
Iris ratio r=b/a	1.77	1.79	1.47	2.25	1.7
wall angle (inner HC, °)	2	2	0	2.4	7
wall angle (end HC,°)	2	0.7	0	4.5	8.36/10
Effective length (10*Lhc,mm)	704	705	694	703.4	
optimum βopt	0.65				
Epeak/Eacc @βopt	2.40 (≯+3%)	2.33	2.71	3	2.71
Bpeak/Eacc (mT/(MV/m)) @βopt	4.48 (≯+2%)	4.41	4.78	4.84	5.72
R/Q (Ω) @βopt	340 (\-4%)	356	297	296	279
G (Ω) @βopt	193	187	190	200	179

Cavity design rationales

PIP-II cavities are required to be **compatible with CW operation** thus the RF duty factor is not a knob for tuning the dynamic heat load and a high accelerating efficiency in terms of R/Q is instead necessary. In addition, the relatively small beam current of PIP-II (2 mA) results in high external Q of the cavity that implies a **narrow bandwidth** of the accelerating mode.

The **sensitivity of field-flatness** to frequency errors is measured by the ratio:

$$N^2/\beta k_{cc} \beta$$
 rel. v

number of cells rel. velocity coupling factor

Comparing existing successful cavities a $k_{cc} \ge 0.95$ % is assumed for PIP-II LB650 cavity

Cav	Ν	β	k _{cc} (%)	$N^2/(\beta k_{cc})$
TESLA	9	1	1.87	4331
SNS MB	6	0.61	1.52	3883
ESS MB	6	0.67	1.55	3467
PIP-II LB650	5	0.61	0.95	4331

Niobium material specifications

A first set of specifications has been issued jointly by INFN and Fermilab for the ongoing manufacturing of prototypes.

- based on assessed physical and chemical values from E-XFEL and ESS productions
- introducing, for the first time, a harder constrain in the allowed ASTM grain size.
 - Each Niobium sheet shall still be fully recrystallized, exhibit uniform size and equal axed grains
 - predominant size ASTM 5 (0.065 mm) but it's requested to have no grains larger than ASTM 4 (0.090 mm) as well as no grains smaller than ASTM 6 (0.045 mm).

In-depth characterization of magnetic flux expulsion capabilities for this niobium will be allowed by cold qualification test of INFN-LASA prototypes at the VTS facility at Fermilab.

PIP-II: INFN-LASA prototypes plans

- First single cell cavity prototype treated with standard XFEL recipe, for reference:
 - 200 μm bulk EP + 700 $^\circ C$ HT + final EP + 120 $^\circ C$ bake
 - Cavity test @ INFN-LASA
- Single cell cavity prototype retreated with high-Q recipe as agreed with Fermilab:
 - Cavity tested again @ INFN-LASA
 - Results are compared with the «standard recipe» ones (and also with FNAL results on single cell LB cavities)
 - Once qualification values for E_{acc} , Q_0 are reached, we consider the surface treatment validated for LB single cell cavity
- **Multicell cavity prototype** treated with high-Q recipe, basing on previous results on single cells:
 - Cavity tested @ INFN-LASA
 - Once qualification values for E_{acc}, Q₀ are reached, we consider the surface treatment validated for LB multicell cavity.

Surface treatments for PIP-II cavities

INFN team for the PIP-II

In DOE words, we expect MIUR to act as Principal Coordinator and INFN President as Laboratory Director in INFN in-kind organization chart.

INFN and Fermilab Collaboration

- INFN and Fermilab have a long tradition of fruitful collaboration on High Energy Physics and accelerator physics and technology
- INFN Scientists spent years at Fermilab contributing to the top discovery (Tevatron)
- INFN Scientists are participating in the Fermilab neutrino and muon programs
- INFN/Fermilab joint effort in TESLA contributed significantly to the setting of the modern SRF technology.
- After the Cold Recommendation for the global Linear Collider, INFN-LASA helped Fermilab to setup ILC SRF Infrastructures.

INFN-LASA and Fermilab collaborations

 Cryomodule assembling tools, developed by INFN-LASA for TESLA/XFEL and globally distributed for ILC and LCLS-II

INFN-LASA and Fermilab collaborations

 CM2 Cold mass equipped with Fermilab 'short' cavities and INFN Blade tuners

• Special 4 cavity Module and tuners for S1-Global at KEK

PIP-II: INFN-LASA prototypes status

- PIP-II **single-cell cavity prototypes** will be shared so to optimize the recipe for surface treatment (bulk EP + HT + doping +)
 - 5 cavities already produced.
 - One has already been shipped to Fermilab.
- 2 completely jacketable 5-cell cavities, fully compliant to the current state of cavity interfaces as per Fermilab specifications.
 - Eddy Current scanning of Nb sheets at DESY performed, no sheet rejected.
 - Delivery to Fermilab by Feb. 2020.
- An **ESS-like prototype**, 702.4 MHz, 6-cells, b=0.67, has also been shipped to FNAL to anticipate the setting-up of low-beta multi-cell EP infrastructure.
 - This cavity, treated with ESS recipe, has been already tested at LASA.

PIP-II: INFN-LASA prototypes plans

- First single cell cavity prototype treated with standard XFEL recipe, for reference:
 - 200 μm bulk EP + 700 °C HT + final EP + 120 °C bake
 - Cavity test @ INFN-LASA
- Single cell cavity prototype retreated with high-Q recipe as agreed with Fermilab:
 - Cavity tested again @ INFN-LASA
 - Results are compared with the «standard recipe» ones (and also with FNAL results on single cell LB cavities)
 - Once qualification values for E_{acc} , Q_0 are reached, we consider the surface treatment validated for LB single cell cavity
- **Multicell cavity prototype** treated with high-Q recipe, basing on previous results on single cells:
 - Cavity tested @ INFN-LASA
 - Once qualification values for E_{acc}, Q₀ are reached, we consider the surface treatment validated for LB multicell cavity.

PIP-II: QA

Making use of INFN-LASA experience on ESS for the PIP-II

R. Paparella | INFN per PIP-II

Summary

- INFN and Fermilab have a long tradition of fruitful collaboration on High Energy Physics and accelerator physics and technology
- The INFN in kind for PIP-II is part of a wider collaboration between Fermilab and INFN to jointly promote the neutrino physics at Fermilab (DUNE, Icarus, CLOE, etc.)
- The SRF experience of INFN LASA in developing and supplying in kind components to international projects perfectly fits the PIP-II scope
- The work on design and prototypes is going as planned
- The PIP-II schedule as presented in the PPD is fully consistent with the expectations based on our experience

