Tecnologie Quantistiche

Nota del MIUR sul Piano Triennale 2019-2021

Con riferimento al ricco e prezioso bagaglio di know-how nell'ambito delle architetture di calcolo, e delle tecnologie associate, si incita l'INFN ad avere un ruolo significativo nelle attività di ricerca e sviluppo del settore, non tralasciando la nuova sfida connessa con le Tecnologie Quantistiche che la UE ha lanciato con una nuova Flagship ad esse dedicata.

EU Quantum Technology flagship

QUANTEP

QUANtum Technologies Experimental Platform

- Call "tematica" sulle Tecnologie Quantistiche
- Sezioni/Laboratori coinvolti: LNL, MI, PG, PI, PV, RM2, SA, TO
- P.I. Andrea Salamon
- Interesse e supporto da: LNGS, IHP, TYNDALL, ...
- 15-17 FTE/anno, 1 Meuro di budget
- Realizzazione di una piattaforma comune basata su Silicon Photonics per lo sviluppo e caratterizzazione di:
 - circuiti per il Quantum Computing (a Tor Vergata)
 - rivelatori di singolo fotone (a Tor Vergata)
 - sorgenti di singolo fotone
 - circuiti per il controllo della polarizzazione

Fotonica su silicio (SOI Silicon On Insulator)

Perche' il silicio?

- Ottimo materiale, ad alto indice di rifrazione (3.5) e bassa dispersione
- Disponibile in grande quantita'
- Possibilita' di integrazione su singolo chip con processi CMOS-compatibili

Gli elementi base della Silicon Photonics (reticolo di Bragg, guida di luce conica, guida di luce)

10

Silicon Photonics con IHP

Silicon On Insulator 250 nm con BJT e CMOS integrati

Simulazione Lumerical FDTD post produzione

sul GDSII del modo che si propaga dentro la

rib waveguide

Quantum Computing

- [1982] R. P. Feynman suggerisce di costruire un computer basato sulla manipolazione di funzioni d'onda per poter simulare la natura con un calcolatore quantistico
- [1994] P. W. Shor propone un algoritmo di fattorizzazione di numeri interi in numeri primi operante su un computer quantistico più efficiente dell'analogo classico
- [2001] Knill, Laflamme e Milburn dimostrano come sia possibile usare l'ottica lineare per l'elaborazione di informazioni quantistiche servendosi di beam splitter, phase shifter, sorgenti e rivelatori di singolo fotone
- [2001-2002] T. C. Ralph, N. K. Langford, T. B. Bell e A. G. White propongono una "Linear optical controlled-NOT gate in the coincidence basis"

Controlled NOT (CNOT) gate

1 qubit:
$$\alpha_0 |0\rangle + \alpha_1 |1\rangle, \ |\alpha_0|^2 + |\alpha_1|^2 = 1$$

Alcuni gate elementari per 1 qubit

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad R_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

2 qubits: $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$ $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$

Un gate prototipo per 2 qubit è la Controlled NOT (CNOT) gate

|a|00
angle + b|01
angle + c|10
angle + d|11
angle riangle a|00
angle + b|01
angle + c|11
angle + d|10
angle

Consiglio di Sezione

CNOT gate con ottica lineare in Silicon Photonics

- Waveguide coupler (con onda evanescente) usati come beam splitter (η =1/2 e η =1/3)
- Coincidence basis (C_0T_0 , C_1T_0 , C_0T_1 , C_1T_1)
- Postselected probabilistic gate (P=1/9)

T. C. Ralph et al, Linear optical controlled-NOT gate in the coincidence basis, DOI: 10.1103/ PhysRevA.65.062324

A. Politi et al, Silica-on-Silicon Wavegide Quantum Circuits, DOI: 10.1126/science.1155441

Sorgenti e rivelatori di singolo fotone e controllo della polarizzazione

- Per realizzare sorgenti (a) e rivelatori (b) di singolo fotone e per la realizzazione di dispositivi per il controllo della polarizzazione (a) è necessario avere accesso al silicio della guida d'onda per effettuare le deposizioni
- Concordate con IHP alcune lavorazioni post produzione (creazione dell'area scoperta ad IHP, deposizioni presso i gruppi di ricerca)

Bi2Se3/n-Si heterojunctions (M. Salvato)

S

Sketch of $Bi_2Se_3/n-Si$ junctions for preliminary measurements

I-V characteristics of Bi_2Se_3 /n-Si heterojunctions in dark and illuminated conditions.

 Bi_2Se_3 deposited on n-Si substrates shows rectification, photovoltaic response and linearity at λ =1550 nm

 Bi_2Se_3/n -Si response to fs laser pulse. Inset Photocurrent vs. laser pulse energy

Bi2Se3 thin film fabrication and characterization (M. Salvato)

Bi2Se3 is a topological insulator (TI) -> insulating in the bulk and metallic on the surface

Sketch of the VSD furnace showing quartz tube with source material and substrates

M. Salvato et al. Nanscale DOI: 10.1039/d0nr02725a (2020).

Optical absorbance of the films deposited on quartz substrates at telecom wavelength. The bandgap $E_{\rm G}$ =0.32 eV slightly depends on the thickness

Furnace for Vapor-solid deposition (VSD)

Research Units and Work Packages

Res. Unit	WP	Roles and Tasks	Competences	Infrastructures	Collaborations
Local Resp.					
LNL	4	Ion implantation;	Ion-solid in-	AN2000 and	INFN LNGS,
V. Rigato		Deterministic	teraction, thin	CN Van de	LABEC, RBI
		placement	films deposi-	Graaff accelera-	
			tion, precision	tors, thin films	
			targeting,	laboratory	
			semiconductors		
Milano	3	Silicon design	Electrical and	IC design tools;	CERN; Tyn-
V. Liberali		and test	optical IC	micro-bonding	dall
			design		
Perugia	1	Numerical test-	Semiconductors	Ultra-cold Laser	
R. Gunnella		ing of quantum	Physics. Non	lab. Structure	
		circuits realiza-	linear Optics	and Microscopy	
		tion	and optome-	characterization	
			chanics		
Pisa	1, 3	Silicon design	Electrical and	Optical labo-	CERN, Fer-
F. Spinella		and test, system	optical IC de-	ratory, Com-	milab, Univ.
		integration	sign, Optical	puting center,	Pisa DII
			spectroscopies	micro-bonding	
Pavia	6	III-V nanowires,	Epitaxy,	CBE, Lithog-	EMFL,
V. Bellani		Graphene and 2D	Transport,	raphy, Trans-	MagLab,
		materials	Fabrication,	port, Ra-	NEST, Berke-
			Light scatter-	man/Rayleigh	ley
			ing/reflection	scattering	
Roma TV	1, 2,	Integrated SPD.	Integrated op-	Integrated optic	TH Wildau,
A. Salamon	3, 5	Test and mea-	toelectronics	characterization	IHP,
		surements	measurements	lab., SNSPD	Chalmers
			Integrated SPD	(2 ch. already	Univ. Tech.
				funded), CW	
				laser, EDFA	
Salerno	5	Low temperature	Solid state	11 T super-	Chalmers
C. Attanasio		and magnetic	transport	conducting	Univ. Tech.
		characteization	phenomena	magnet, 2 K	
		of SPD		low tempreature	
				cryostats	
Torino	1, 4,	Telecom SPSs,	Quantum	Confocal mi-	INRiM,
J. Forneris	5, 6	Determinis-	optics, Ion	croscope, Ion	LABEC,
		tic placement,	implantation,	implanter oper-	MPD, RBI,
		SPADs charac-	solid-state	ational by 3-21,	PTB, Univ.
		terization	physics	cleanroom	Leipzig

- WP1 System integration and coordination
- WP2 Linear optics quantum circuits
- WP3 Silicon photonics circuits
- WP4 Single photon sources
- WP5 Single photon detectors
- WP6 Polarization control devices

FTE per unità normalizzati a 11 mesi/anno per persona

Personah Unit	FTE without AdR requests			FTE with AdR requests			
Research Unit	2021	2022	2023	2021	2022	2023	
LNL	1.0	1.3	0.9	1.0	2.3	0.9	
Milano	2.2	2.2	2.2	2.7	2.7	2.2	
Perugia	1.3	1.3	1.3	2.3	1.3	1.3	
Pisa	1.8	1.8	1.8	1.8	2.8	1.8	
Pavia	2	2	2	2	3	3	
Roma TV	4.7	4.7	4.6	4.7	4.7	4.6	
Salerno	0.6	0.6	0.3	0.6	0.6	0.3	
Torino	3.4	3.4	2.1	4.4	3.4	2.1	
TOTAL	17	17.3	15.2	19.5	20.8	16.2	

Richieste su 3 anni per capitolo di spesa

Chapter	2021	2022	2023	Total
Travel expenses	28	29	25	82
Consumables	174	180	35.5	389.5
Equipments	319	15	0	334
SPServices	150	0	0	150
SW licenses	20.5	22	0	42.5
TOTAL	691.5	246	60.5	998

Richieste economiche Tor Vergata

	5	Flow meters	2			Equipments
DM9	5	Leak valve	0.5			Equipments
nW12	5	Vacuum gauge	2			Equipments
	5	Vacuum Pump	8			Equipments
	5	Tube Furnace	6			Equipments
	1	Upgrade SNSPD	70			Equipments
	1	Tunable Bandpass Fiber Optic Fil-	9			Equipments
		ter x 2				
	1	Entangled Single Photon Source	50			Equipments
	1	Active Mechanical Isolation for Op-	5			Equipments
		tical Breadboard				
	1	DWDM (DEMUX only)	3			Equipments
	1	Polarimeter	12			Equipments
	1	V-groove Coupling	1.5	1.5	1.5	Consumables
	1,5	Laboratory consumables	2	2	2	Consumables
	1,5	Travels	5	5	5	Travels
i				-		·

176 8.5 8.5 kEuro

Anagrafica Tor Vergata

	2021	2022	2023
Bonaiuto	30	30	30
De Matteis	100	100	100
Prosposito	60	60	60
Salamon	70	70	70
Salvato	100	100	100
Sargeni	20	20	20
PhD (Eng. Dept.)	100	100	100
	480	480	480