GOALS

NODIW Proposal

New Optoelectronic Devices
Integrating 2D materials
in van der Waals
heterostructures

GROUPS

TIMELINE/
Budget

Methodology

GROUPS

Goals

opto-electronic properties of 2D layered materials (2DLMs) to create novel Van der Waals Heterostructures (vdWHs), which will lead to a new generation of building blocks for device design

(IR photo-detectors, LED, photovoltaics)

Hybrid vdWHs

Switchable photocromic molecules

/Straintronics

2DLMs: Graphene, MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2

Why 2D layered materials?

Perfect platform for fundamental physics study and as Building blocks nanoscale devices

Atomic thickness offers Highly mechanical flexibility & Large Breaking strengths

Large variety of chemical/physical properties

Extremely sensitive to external stimuli: chemical modification, electric fields strain deformation, doping

High degree of freedom from Van der Waals Heterostructuring to build new functional materials

Methodology

Growth of 2DMLs & vdWH

TOP-DOWN

Characterization

EELS

PL, RAMAN

SEM

Opto-electronic performances

STM,STS

Modeling & simulations

Need to describe ground and excited-state quantum-mechanical properties

Many-body Perturbation Theory

"W. Kohn Nobel 1998

Non Interacting System

n(r)

GW

Weakly interacting system

= Quasiparticle

= Quasihole

Screened interaction

GROUPS

TIMELINE/BUDGET

Budget Totale 667 keuro

RM2 108 keuro

PREVENTIVO GLOBALE DI SPESA PER L'ANNO 2021

Struttura	A carico dell'I.N.F.N.									
	missioni	consumo	altri_cons	trasporti	manutenzione	inventario	licenze-SW	apparati	spservizi	TOTALI
CS	5.00	20.00	24.00							49.00
LNF	5.00	17.00	30.00		4.00	190.00				246.00
RM2	10.00	10.00	24.00							44.00
Totali	20.00	47.00	78.00		4.00	190.00				339.00

Missioni + publicazioni + risorse computazionali + AdR INFN junior

Thank you for your attention

Modeling & simulations

DFT

Kohn-Sham Equations

$$H_0(r)\varphi_{\mathrm{KS}}(r) + v_{\mathrm{xc}}(r)\varphi_{\mathrm{KS}}(r) = \varepsilon_{\mathrm{KS}}\varphi_{\mathrm{KS}}(r)$$

Ground-state properties KS gaps underestimate the real QP ones

GW method

$$\varepsilon_{i}^{QP} \approx \varepsilon_{i}^{KS} + <\varphi_{i}^{KS} \mid \Sigma(\varepsilon_{nk}^{KS}) - V_{xc} \mid \varphi_{i}^{KS} >$$

Bethe-Salpeter Equation (BSE)

Modeling & simulations

DFT

Kohn-Sham Equations

$$H_0(r)\varphi_{\mathrm{KS}}(r) + v_{\mathrm{xc}}(r)\varphi_{\mathrm{KS}}(r) = \varepsilon_{\mathrm{KS}}\varphi_{\mathrm{KS}}(r)$$

Ground-state properties KS gaps underestimate the real QP ones

GW method

$$\varepsilon_{i}^{QP} \approx \varepsilon_{i}^{KS} + <\varphi_{i}^{KS} \mid \Sigma(\varepsilon_{nk}^{KS}) - V_{xc} \mid \varphi_{i}^{KS} >$$

PES, IPES, ARPES, STS

Bethe-Salpeter Equation (BSE)

ABSORPTION, REFLECTIVITY, EELS,...

