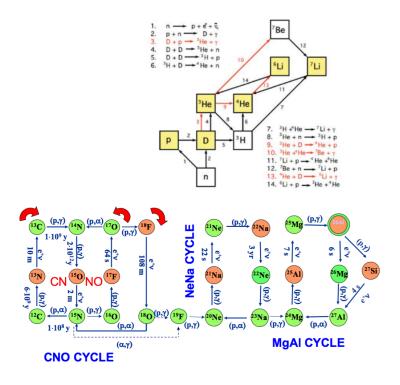


LUNA3 (CSN3) e LUNA-MV (progetto premiale)

Sandra Zavatarelli

INFN - Sezione di Genova

Resp. Loc. LUNA



LUNA 3: attivita' 2019-20

Acceleratore LUNA -400:

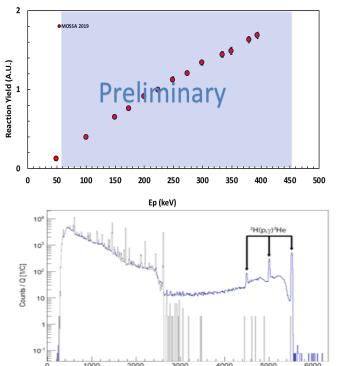
programma approvato fino al 2021

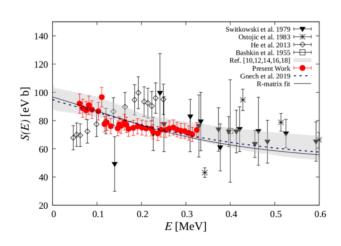
- BBN e combustione H nel Sole: $p(d,\gamma)^3$ He, 6 Li $(p,\gamma)^7$ Be
- Nucleosintesi in AGB e abbondanze nuclei leggeri : $^{12}\text{C}(p,\gamma)^{13}\text{N}$, $^{13}\text{C}(p,\gamma)^{14}\text{N}$, $^{17}\text{O}(p,\gamma)^{18}\text{F}$, $^{20}\text{Ne}(p,\gamma)^{21}\text{Na}$
- Sorgenti di neutroni: ${}^{13}\text{C}(\alpha, n){}^{16}\text{O}$
- Combustione elio : 22 Ne $(\alpha, \gamma)^{26}$ Mg
 - -- esperimenti conclusi
 - -- esperimenti in presa dati
 - -- previsti per il prox. anno

Acceleratore LUNA-MV: combustione He e C

- Pronto presso la HVEE, autorizzati a portarlo in galleria ai LNGS (no montaggio per ora);
- Sala acceleratore pronta, in costruzione la Control Room;
- Ottenuto il nulla osta prefettizio;
- Sottomessa documentazione alle Regione Abruzzo per ottenera la VA.

Riassunto risultati scientifici: esperimenti conclusi


• $p(d,\gamma)^3He$


Motivazione scientifica: determina l'abbondanza di deuterio prodotto dalla BBN e per confronto con le misure dirette di D primordiale permette di vincolare la densita' barionica; Risultati ottenuti: esplorato tutto il range energetico di interesse per la BBN con precisione 3% sulla sezione d'urto, ottenuto nuovo vincolo preciso per la densita' barionica indipendente dalla CMB (Planck);

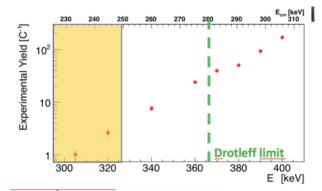
Stato pubblicazioni: articolo tecnico su setup sperimentale e dettagli analisi pubblicato, articolo con risultati su $\Omega_{\rm B}$ in review su Nature. Previsti altro articolo (su test dei modelli nucleari abinizio).

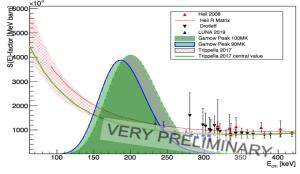
• ⁶Li(p,γ)⁷Be

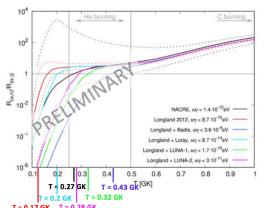
Motivazione scientifica: reazione delle BBN e responsabile della combustione del litio nei primi stadi evolutivi stellari, possibile risonanza a bassa energia E_{cm}=195 keV suggerita da He et al(2013); **Risultati ottenuti:** risonanza a bassa energie esclusa, ottimo accordo del fattore astrofisico con i modelli nucleari teorici; **Stato pubblicazioni**: lettera con i risultati scientifici sottomessa a PRL

E, [keV]

Riassunto risultati scientifici: esperimenti conclusi

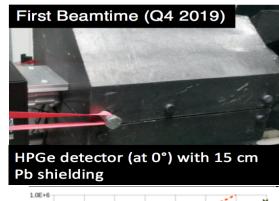

• $^{13}C(\alpha,n)^{16}O$

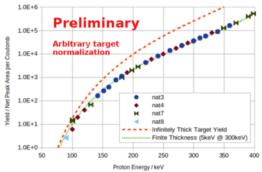

Motivazione scientifica: reazione che fornisce neutroni per il processo s nelle stelle AGB (sintesi 50% elementi pesanti) , sezione d'urto non nota alle energie di interesse.


Risultati ottenuti: con 6 mesi di misura e piu' di 100 targets, misurata per la prima volta nel picco di Gamow **Stato pubblicazioni**: articolo tecnico sui bersagli pubblicato su EPJA, sottomesso secondo articolo sui rivelatori (NIM A), articolo con i risultati scientifici e conseguenze astrofisiche in preparazione

• 22 Ne(α , γ) 26 Mg

Motivazione scientifica: reazione che compete con la 22 Ne(α , n) 25 Mg come sorgente di neutroni negli AGB; **Risultati ottenuti**: ottenuto limite superiore sulla risonanza a 395 keV in condizioni "background free"; **Stato pubblicazioni :** studio dell'impatto del rate di reazione misurato sugli AGB in corso, lettera in preparazione

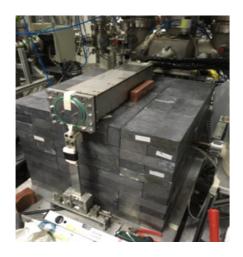

DATA SET	Q[C]	Background used for analysis	ωγ [εν]
Phase I	312.4	Lab. Background	1.7 10 10
Phase I, 5 crystals	103	Lab background	13/10-10
Phase II	445.6	BIB	$3 \cdot 10^{-11}$


Riassunto esperimenti in presa dati

• ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{13}C(p,\gamma){}^{14}N$

Motivazione scientifica: reazioni che determinano la distribuzione del C negli strati arricchiti in idrogeno e piu' interni nelle stelle.

Stato dell'esperimento: dati acquisiti per due mesi, previsto un ulteriore periodo di presa dati. Analisi in corso. Risultati preliminari disponibili.



• ²⁰Ne(p,γ)²¹Na

Motivazione scientifica: e' la reazione piu' lenta (il bottleneck) del ciclo NeNa, che sintetizza Ne e Mg, a E_{cm} =366 keV c'e' una risonanza stretta mai osservata direttamente accessibile a Luna-400

Stato dell'esperimento: dato il Q=2432 keV si usano rivelatori al germanio dentro una spessa schermatura di Pb.

Preparazione setup iniziata nel Feb. 2020 e bloccata a causa dell'emergenza sanitaria. Tempo di misura stimato : 7 mesi Ripresa turni : settembre 2020

Pubblicazioni piu' recenti:

• Cross section of the reaction $^{18}O(p,\gamma)^{19}F$ at astrophysical energies: The 90 keV resonance and the direct capture component

Physics Letters B 797 (2019) 134900

• Direct measurements of low-energy resonance strengths of the 23 Na(p, γ) 24 Mg reaction for astrophysics

Physics Letters B 795 (2019) 122-128

• Improved astrophysical rate for the $^{18}O(p,\alpha)^{15}N$ reaction by underground measurements

Physics Letters B 790 (2019) 237-242

• Setup commissioning for an improved measurement of the $D(p,\gamma)^3$ He cross section at Big Bang Nucleosynthesis energies

European Physical Journal A 56 (2020) 144

• A new approach to monitor 13 C-targets degradation in situ for 13 C(α ,n) 16 O cross-section measurements at LUNA

European Physical Journal A 56 (2020) 75

+ altri 4 articoli attualmente in revisione

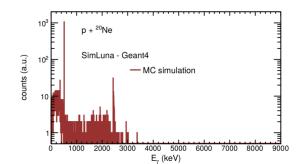
Gruppo genovese

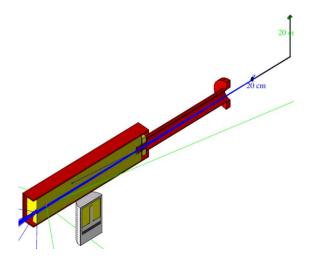
Corvisiero P. (Assoc. VIP) (Piero lavora al 300%;)))

Ferraro F. 20% (Assegnista, resp. calorimetro per il bersaglio gassoso)

Prati P. 50% (Assoc.- finito mandato SP gennaio 2020)

Zavatarelli S. 70% (Resp. Locale, Membro CB e EB e P.I. per la reazione 20 Ne(p, γ) 21 Na)


Resp. Scientifiche Genova:


LUNA - 400:

- Leadership misura 2 H(p, γ) 3 He, bersaglio gassoso (da scrivere ancora un articolo su test dei modelli nucleari ab-inizio),
- Leadership misura ²⁰Ne(p,γ)²¹Na in presa dati

LUNA-MV:

- Resp. misura intensità fascio
- Resp. Software di simulazione (Luna 400 + MV) SimLuna

LUNA - GE

Richieste servizi

Officina Meccanica:

• realizzazione della camera per la calibrazione del calorimetro e qualche miglioria dei supporti per i collimatori da utilizzarsi nella misura della reazione 20 Ne(p, γ) 21 Na (2mesi)

Progettazione Meccanica: progettazione calorimetro per l'acceleratore LUNA-MV (1 mese)

Officina elettronica: elettronica di controllo per la lettura della corrente del fascio e impulsazione del sistema LED dei cristalli del rivelatore BGO (1 mese)

Supporto tecnico: G. Ottonello (1 mese) e F. Parodi (2 mesi)