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e Ultracold atoms
= Tunable interactions (Feshbach resonance)
=  Rotation: Coriolis force = Lorentz force

Filling fraction ’ Syntheti.c charge o
1r * Synthetic magnetic field

[Dalibard, RMP 2011]

* Ansatz for ground state [Laughlin, PRL 1983] * Photons in twisted cavity [Clark et al., arXiv 2019]

» Excitations: quasi-holes (QHs) and quasi-particles (QPs) with
= Fractional charge [De Picciotto et al., Nature 1997)
= Fractional statistics
?

e Control laser
= Excitation to Rydberg state
= Cavity Rydberg polaritons:
strong interactions

* Probe twisted laser
= Artificial gauge field

Shot-noise / interferometric experiments in this setup
are difficult to modellize and perform




System and model|

Impurities inside FQH atomic liquid

B = Bu,

T

Impurities Atoms
O .

Number n>N

N
Charge Q q
M

Mass m



System and model|

Impurities inside FQH atomic liquid

B = Bu,

I
.
_—
——
e
ey
o
|
R
4
i
|
>
o~
-
e
| —

{ Hamiltonian ) = 2; AVl N
i=1
N . 2
.10 ® : + Ti({Rj}):Zm[—ZVRJ-—QA(RJ')} :
=1

Impurities Atoms + Vaa({rj}) = gaaz 5(r
‘ ® i<j
Number N n> N + Via({ri}, {Rs}) szla
Charge Q q N o
Mass i - + Vi({Rj}) = wi(Ri —Ry).

1<j



System and model|

Impurities inside FQH atomic liquid

° 0{. ol® Hamiltonian Tal{r;}) = 2 % [~V — gA(ry)]”
O] o : J_N
T O ® + TR} =) ﬁ iV, — QA(R))]” |
1| i=1

Impu‘rities Ato‘ms Repu:‘:;’eer:z;r;atom + | Vaa({rj}) = daa ; o(r; —rj)|.
Number N n> N + Via({ri}, {Rs}) szla
Charge Q q N o
Mass Y . + Vi({Rj}) = wi(Ri —Ry).

1<j



System and model|

Impurities inside FQH atomic liquid

B = Bu, 1 2
Hamiltonian = T.({rj}) = 21: 5 [=1Ve, —qA(r)]"
J:
Ny ,
+ Ti({Ry}) = Z B [_3VRJ - QA(RJ)} 3
=1
Repulsive atom-atom -
interaction + | Vaa(iri}) = gaa Z o(r; —xj)f,
Repulsive impurity-atom n XN
Number interaction + | Via({rj} {Ry}) = 21:2 via(ri — R;)
1= 1=

Charge
+ Vi({Rj}) = wi(Ri —Ry).

Mass



System and model|

Impurities inside FQH atomic liquid

B = Bu,

Hamiltonian

Repulsive atom-atom
interaction

Repulsive impurity-atom N

Number interaction

Charge o _
Repulsive impurity-

Mass impurity interaction




System and model|

Impurities inside FQH atomic liquid

B = Bu,

Hamiltonian

Repulsive atom-atom

interaction
Repulsive impurity-atom
+
Number interaction
Charge o _
Repulsive impurity-
Mass impurity interaction

‘ + = “Anyonic molecule”

Impurity  QH
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Born-Oppenheimer approximation

* Total wavefunction: (under BO approx.) « Mass renormalization for 1 impurity + 1 QH
U({ri} AR} ) = oin ({6 v({Ra} 1) M=M+AM
—_— )
N ©) ) 1st correction to BO
Atoms  Impurities ¢r(r.1) ~ g (r) +|ch (r.? approx.

7~

Ground state of Hpo =7, + Vi + Vi [Scherrer et al., PRX 2017]
* Laughlin’s Ansatz for FQH liquid
* QHs at impurities positions

Aw_1 (1st excited state energy)
AM - m Weyel

H‘(p(m> M __MAwa | weya=qB/m

* Effective Hamiltonian acting on Y(R)

Mo = (2
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Single impurity

* Proposed experiment

e 1 impurity bound to 1 quasihole

e Dynamics of impurity governed by effective Hamiltonian
actingon Y(R)

AY —vq) A(R)]?

Ho = (o0 )| 1] (r)) = EVR =@ - va) AR

2M

A(R):%uzxf{ B = Bu,

* Effective charge of anyonic molecule:

|Q = — yql i.e. impurity charge + QH charge * Give molecule momentum kﬁv p=Myv
e Cyclotron orbit with 7¢yc1 = 0B

* Image impurity’s position at different times after
deterministic preparation

— Reconstruct trajectory —>|Measure M, O I
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Two impurities

e 2D scattering between 2 anyonic molecules

1 QH bound to each impurity
— (bosons), la = 1 + v| (fermions)

Impurities in bulk of FQH droplet
Large inter-impurity distance
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— Use M from the single-impurity calculation ' SEEERCE MR

+“Exchange

Effective Hamiltonian:

Hup =y VR = QARD Ao (R}

+ Vi(Ry, Ry)
=1

* Long-range Aharonov-Bohm interaction

Astarj({Ric}) = (=1) 75

Tel

e Solve Schrodinger equation
u, X Ryq » Differential scattering cross section

do.
do
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Conclusions

* Fractional charge and statistics from quantum dynamics of ¢ 2 molecules
impurities in FQH droplet * Fractional statistics gives rise to long-range Aharonov-
Bohm interaction

= Differential scattering cross section displays oscillatory

pattern
= Fractional statistics is observable from rigid shift in its
angular dependence 102\ | | . .
)
* Single molecule 100 % ;
= Renormalization of mass and charge - WW‘$
=  Cyclotron orbit : SRl 2 102 :
' ,'I)Exchange ;5
10-4 i
10760 Oi2 0j4 0i6 OiS I

¢/7

* Future perspectives
* FQH fluids with non-Abelian excitations

[Nayak, RMP 2008]




